www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Zufallsvariablen
Zufallsvariablen < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zufallsvariablen: Beweisende unklar
Status: (Frage) beantwortet Status 
Datum: 11:39 Mi 04.04.2012
Autor: schachuzipus

Aufgabe
Seinen [mm]X_1,X_2,\ldots[/mm] unabhängig mit [mm]\sum\limits_{n\ge 1}\opreatorname{Var}(X_n) \ < \ \infty[/mm].

Dann konvergiert [mm]\sum\limits_{i=1}^{n}(X_i-EX_i)[/mm] f.s. gegen eine ZV [mm]X[/mm]



Hallo zusammen,

meine Frage bezieht sich auf das Ende des Beweises, den ich am besten mal eintippe:

Bew.: Sei o.E. [mm]EX_i=0[/mm].

Nach irgendeiner Übung (die ich nicht habe) ist [mm]S_n=\sum\limits_{i=1}^{n}X_i[/mm] Cauchyfolge f.s. gdw. [mm]P\left(\bigcup\limits_{j,k\ge m}(|S_j-S_k|>\varepsilon)\right)\longrightarrow 0[/mm] für [mm]m\to\infty \ \ \ (\star)[/mm]

Es gilt [mm]P\left(\bigcup\limits_{k=1}^{\infty}(|S_{k+m}-S_m|>\varepsilon)\right) \ = \ \lim\limits_{n\to\infty}P\left(\bigcup\limits_{k=1}^{n}(|S_{k+m}-S_m|>\varepsilon)\right) \ = \ \lim\limits_{n\to\infty}P(\max\limits_{1\le k\le n}|S_{k+m}-S_m|>\varepsilon)[/mm]

[mm]\le \ \lim\limits_{n\to\infty}\frac{\operatorname{Var}(S_{m+n}-S_m)}{\varepsilon^2} \ = \ \lim\limits_{n\to\infty}\frac{1}{\varepsilon^2}\sum\limits_{j=m+1}^{m+n}\operatorname{Var}(X_j)=\frac{1}{\varepsilon^2}\sum\limits_{j=m+1}^{\infty}\operatorname{Var}(X_j) \ \longrightarrow 0[/mm] für [mm]m\to\infty[/mm]

Bis hierhin ist mir das klar.

Nun: "Das reicht wegen [mm]|S_j-S_k| \ \le \ |S_j-S_m| \ + \ |S_k-S_m|[/mm]"

Wieso reicht das?

Er will doch zeigen, dass [mm]\sum\limits_{i=1}^{n}X_i[/mm] Cauchyfolge ist, wie kommt er denn mit dem "Das reicht" auf die obige Bedingung [mm](\star) \ \ P\left(\bigcup\limits_{j,k\ge m}(|S_j-S_k|>\varepsilon)\right)\longrightarrow 0[/mm] für [mm]m\to\infty[/mm] ?

Ich bin für jede Hilfe dankbar!

Gruß

schachuzipus



        
Bezug
Zufallsvariablen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:25 Mi 04.04.2012
Autor: tobit09

Hallo schachuzipus,

nach einigem Überlegen verstehe ich den/die Dozenten/in folgendermaßen:


Gezeigt ist:

     [mm] $P(A_m)\longrightarrow [/mm] 0$ für [mm] $m\to\infty$ [/mm]

mit

     [mm] $A_m:=\bigcup_{i=1}^\infty\underbrace{(|S_{i+m}-S_m|>\bruch\varepsilon2)}_{=:A_{mi}}$. [/mm]

Zu zeigen ist

     [mm] $P(B_m)\longrightarrow [/mm] 0$ für [mm] $m\to\infty$ [/mm]

mit

     [mm] $B_m:=\bigcup_{j,k\ge m}^\infty\underbrace{(|S_j-S_k|>\varepsilon)}_{=:B_{jk}}$. [/mm]


Daher genügt es, [mm] $B_m\subseteq A_m$ [/mm] für alle [mm] $m\in\IN$ [/mm] zu zeigen.


Sei dazu [mm] $\omega\in B_m$, [/mm] etwa [mm] $\omega\in B_{jk}$ [/mm] für [mm] $j,k\ge [/mm] m$. Wegen

     [mm] $\varepsilon<|S_j-S_k|(\omega) [/mm] \ [mm] \le [/mm] \ [mm] |S_j-S_m|(\omega) [/mm] \ + \ [mm] |S_k-S_m|(\omega)$ [/mm]

gilt dann

     [mm] $|S_j-S_m|(\omega)>\bruch\varepsilon2$ [/mm] oder [mm] $|S_k-S_m|(\omega)>\bruch\varepsilon2$. [/mm]

Etwa ersteres (letzteres behandelt man analog). Mit [mm] $i:=j-m\ge0$ [/mm] (auch [mm] $i\not=0$) [/mm] gilt dann [mm] $\omega\in A_{mi}\subseteq A_m.$ [/mm]


Viele Grüße
Tobias

Bezug
                
Bezug
Zufallsvariablen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:27 Do 05.04.2012
Autor: schachuzipus

Hallo Tobias,

erstmal [mm] $10^3$ [/mm] Dank, das sieht sehr gut aus, ich werde es mir aber erst morgen in aller Ruhe zu Gemüte führen können.

Bis demnächst - es kommen sicher noch so einige Fragen ...

Gruß und schöne Ostertage

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de