www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Zusammenfassung einer Matrix
Zusammenfassung einer Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zusammenfassung einer Matrix: Rechenweg
Status: (Frage) beantwortet Status 
Datum: 18:30 Fr 15.02.2008
Autor: gabbiadini

Aufgabe
Gesucht ist der Rechenweg, der auf Gleichung vier führt

Gleichung 1:   [mm] \vektor{b1 \\ b2 \\ b3 \\ b4} [/mm] = [mm] \pmat{ 0 & T & I & C \\ T & 0 & C & I \\ I & C & 0 & T \\ C & I & T & 0} \* \vektor{a1 \\ a2 \\ a3 \\ a4} [/mm]

Gleichung 2:   a4 = r [mm] \* [/mm] b4

Gleichung 3:   a2 = R [mm] \* [/mm] b2


Substitution von Gleichung 2 und Gleichung 3 in Gleichung 1 ergibt folgende

Gleichung 4:   [mm] \vektor{b1 \\ b3} [/mm] = [mm] \pmat{ C²r+\bruch{(T+CrI)²R}{1-I²rR} & (I+CrT)+\bruch{(C+TrI)(T+CrI)R}{1-I²rR} \\ (I+CrT)+\bruch{(C+TrI)(T+CrI)R}{1-I²rR} & Tr²+\bruch{(C+TrI)²R}{1-I²rR}} \* \vektor{a1 \\ a3} [/mm]  

Hallo,

ich versuche jetzt schon seit einigen Stunden vergeblich, den Rechenweg nachzuvollziehen, der aus den Gleichungen 1, 2 und 3 die Gleichung 4 folgen lässt. Die Substitution bekomme ich ja noch hin, aber leider sind noch einige weitere Rechenschritte ausgelassen, so dass ich einfach auf keinen grünen Zweig komme. Kann mir eventuell jemand hierbei helfen oder einen Tipp geben?

Falls dies von Interesse ist, die Formeln beschreiben einen in der Hochfrequenztechnik verwendeten Richtkoppler und stammen aus dieser []PDF-Datei (siehe Seite 2).



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

MfG,
Thomas



        
Bezug
Zusammenfassung einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 19:45 Fr 15.02.2008
Autor: MathePower

Hallo gabbiadini,

> Gesucht ist der Rechenweg, der auf Gleichung vier führt
>  
> Gleichung 1:   [mm]\vektor{b1 \\ b2 \\ b3 \\ b4}[/mm] = [mm]\pmat{ 0 & T & I & C \\ T & 0 & C & I \\ I & C & 0 & T \\ C & I & T & 0} \* \vektor{a1 \\ a2 \\ a3 \\ a4}[/mm]
>  
> Gleichung 2:   a4 = r [mm]\*[/mm] b4
>  
> Gleichung 3:   a2 = R [mm]\*[/mm] b2
>  
>
> Substitution von Gleichung 2 und Gleichung 3 in Gleichung 1
> ergibt folgende
>  
> Gleichung 4:   [mm]\vektor{b1 \\ b3}[/mm] = [mm]\pmat{ C²r+\bruch{(T+CrI)²R}{1-I²rR} & (I+CrT)+\bruch{(C+TrI)(T+CrI)R}{1-I²rR} \\ (I+CrT)+\bruch{(C+TrI)(T+CrI)R}{1-I²rR} & Tr²+\bruch{(C+TrI)²R}{1-I²rR}} \* \vektor{a1 \\ a3}[/mm]
> Hallo,
>  
> ich versuche jetzt schon seit einigen Stunden vergeblich,
> den Rechenweg nachzuvollziehen, der aus den Gleichungen 1,
> 2 und 3 die Gleichung 4 folgen lässt. Die Substitution
> bekomme ich ja noch hin, aber leider sind noch einige
> weitere Rechenschritte ausgelassen, so dass ich einfach auf
> keinen grünen Zweig komme. Kann mir eventuell jemand
> hierbei helfen oder einen Tipp geben?

Versuche mal [mm]b_{2}, b_{4}[/mm] in Abhängigkeit von [mm]a_{1}, a_{3}[/mm] auszudrücken.

>  
> Falls dies von Interesse ist, die Formeln beschreiben einen
> in der Hochfrequenztechnik verwendeten Richtkoppler und
> stammen aus dieser
> []PDF-Datei
> (siehe Seite 2).
>  
>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> MfG,
>  Thomas
>  
>  

Gruß
MathePower

Bezug
                
Bezug
Zusammenfassung einer Matrix: Korrekturmitteilung
Status: (Korrektur) richtig (detailiert geprüft) Status 
Datum: 16:59 So 17.02.2008
Autor: gabbiadini

Vielen Dank, das war der entscheidende Tipp!

Habe da den Wald vor lauter Bäumen nicht gesehen, aber jetzt bin ich dank des Tipps ebenfalls auf das Ergebnis gekommen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de