www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Zusammengesetzte Zahl
Zusammengesetzte Zahl < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zusammengesetzte Zahl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:32 Mi 22.10.2014
Autor: studentin3112

Aufgabe
Sei n [mm] \in \IN [/mm] eine zusammengesetzte Zahl. Sei p die kleinste Primzahl,die n teilt und sei [mm] p>\wurzel[3]{n}. [/mm]
Beweisen Sie, dass [mm] \bruch{n}{p} [/mm] eine Primzahl ist.

Hallo ;)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Da n eine zusammengesetzte Zahl ist, gilt n=a*p für ein n [mm] \in \IN [/mm] und p prim , p > [mm] \wurzel[3]{n}. [/mm]

Zu zeigen ist, dass [mm] \bruch{n}{p} [/mm] nur durch 1 und durch sich selbst teilbar ist.
Ich habe überlegt einen Widerspruchsbeweis zu machen.
Angaenommen es gibt ein x [mm] \in \IN [/mm] sodass [mm] \bruch{n}{p}=x*b, [/mm] wobei b [mm] \in \IN. [/mm]

Durch ein Lemma wissen wir, dass n einen Teiler d hat mit 1<d [mm] \le \wurzel{n}. [/mm] Daraus folgt, dass n=d*b für ein b [mm] \in \IN. [/mm]

Jetzt weiß ich schonmal dass [mm] p>\wurzel[3]{n} [/mm] und d [mm] \le \wurzel{n}. [/mm]

Weiter komme ich nicht. Hat jemand einen Tipp für ich ?

Danke
Lieben Gruß
Studentin



        
Bezug
Zusammengesetzte Zahl: Antwort
Status: (Antwort) fertig Status 
Datum: 13:57 Mi 22.10.2014
Autor: abakus


> Sei n [mm]\in \IN[/mm] eine zusammengesetzte Zahl. Sei p die
> kleinste Primzahl,die n teilt und sei [mm]p>\wurzel[3]{n}.[/mm]
> Beweisen Sie, dass [mm]\bruch{n}{p}[/mm] eine Primzahl ist.
> Hallo ;)

>

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

>

> Da n eine zusammengesetzte Zahl ist, gilt n=a*p für ein n
> [mm]\in \IN[/mm] und p prim , p > [mm]\wurzel[3]{n}.[/mm]

Hallo,
damit gilt insbesondere [mm]p^3>n[/mm], woraus [mm]p^2>\bruch{n}{p}[/mm] folgt.

>

> Zu zeigen ist, dass [mm]\bruch{n}{p}[/mm] nur durch 1 und durch sich
> selbst teilbar ist.
> Ich habe überlegt einen Widerspruchsbeweis zu machen.
> Angaenommen es gibt ein x [mm]\in \IN[/mm] sodass [mm]\bruch{n}{p}=x*b,[/mm]
> wobei b [mm]\in \IN.[/mm]

Element von n reicht nicht. x und b müssten für deinen Widerspruchsbeweis größer als 1 sein.
Aus [mm]p^2>\bruch{n}{p}[/mm] und [mm]\bruch{n}{p}=x*b,[/mm] folgt nun [mm]p^2>x*b,[/mm]
Hatten wir nicht aber laut Aufgabenstellung, dass p der kleinste Primteiler von n sein soll?
Gruß Abakus

PS: Wie weit bist du mit Teil 1) deines vorherigen Posts?
>

> Durch ein Lemma wissen wir, dass n einen Teiler d hat mit
> 1<d [mm]\le \wurzel{n}.[/mm] Daraus folgt, dass n=d*b für ein b [mm]\in \IN.[/mm]

>

> Jetzt weiß ich schonmal dass [mm]p>\wurzel[3]{n}[/mm] und d [mm]\le \wurzel{n}.[/mm]

>

> Weiter komme ich nicht. Hat jemand einen Tipp für ich ?

>

> Danke
> Lieben Gruß
> Studentin

>
>

Bezug
                
Bezug
Zusammengesetzte Zahl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:37 Do 23.10.2014
Autor: studentin3112


> > Sei n [mm]\in \IN[/mm] eine zusammengesetzte Zahl. Sei p die
>  > kleinste Primzahl,die n teilt und sei [mm]p>\wurzel[3]{n}.[/mm]

>  > Beweisen Sie, dass [mm]\bruch{n}{p}[/mm] eine Primzahl ist.

>  > Hallo ;)

>  >
>  > Ich habe diese Frage in keinem Forum auf anderen

>  > Internetseiten gestellt.

>  >
>  > Da n eine zusammengesetzte Zahl ist, gilt n=a*p für ein

> n
>  > [mm]\in \IN[/mm] und p prim , p > [mm]\wurzel[3]{n}.[/mm]

>  
> Hallo,
>  damit gilt insbesondere [mm]p^3>n[/mm], woraus [mm]p^2>\bruch{n}{p}[/mm]
> folgt.
>  
> >
>  > Zu zeigen ist, dass [mm]\bruch{n}{p}[/mm] nur durch 1 und durch

> sich
>  > selbst teilbar ist.

>  > Ich habe überlegt einen Widerspruchsbeweis zu machen.

>  > Angaenommen es gibt ein x [mm]\in \IN[/mm] sodass

> [mm]\bruch{n}{p}=x*b,[/mm]
>  > wobei b [mm]\in \IN.[/mm]

>  Element von n reicht nicht. x und b
> müssten für deinen Widerspruchsbeweis größer als 1
> sein.
>  Aus [mm]p^2>\bruch{n}{p}[/mm] und [mm]\bruch{n}{p}=x*b,[/mm] folgt
> nun [mm]p^2>x*b,[/mm]
>  Hatten wir nicht aber laut Aufgabenstellung, dass p der
> kleinste Primteiler von n sein soll?

Ja hatten wir.
aus [mm] x*b Liegt darin der Widerspruch ?

lg
studentin

Bezug
                        
Bezug
Zusammengesetzte Zahl: Antwort
Status: (Antwort) fertig Status 
Datum: 13:00 Do 23.10.2014
Autor: MacMath


>  aus [mm]x*b
> ist auch [mm]\wurzel{x*b}[/mm] ein Teiler von n und ist kleiner als
> p.

Findest du, dass Wurzeln zur Teilbarkeit nach einer guten Idee aussehen?

>  Liegt darin der Widerspruch ?

Was abakus meinte, ist das Folgende:
Wenn [mm] $\frac{n}{p}$ [/mm] keine Primzahl ist, besitzt es eine Darstellung
[mm] $\frac{n}{p}=x*b$ [/mm] ($x,b>1$)

Du hast auch
$ [mm] p^2>x\cdot{}b, [/mm] $

Damit ist $p>x$ oder $p>b$, kann $p$ dann noch der kleinste Primteiler von $n$ sein?

LG
Daniel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de