www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Zusammenhänge Hessem., Spur
Zusammenhänge Hessem., Spur < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zusammenhänge Hessem., Spur: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:34 Di 24.02.2015
Autor: SoWhat

Aufgabe
Bei der Berechnung von Extremwerten einer (bel. oft stetig diffbaren) Funktion mit 2 Variablen ergibt sich eine 1) nicht symmetrische Matrix, 2) symmetrische Matrix als Hessematrix.

Hallo,
meine Frage hierzu ist eine Verständnisfrage.
Wenn ich die Hessematrix zu einem stationären Punkt gebildet habe, dann
1)
berechne ich die Determinante der Hessematrix zum Punkt und den Wert des Punktes in der 2. Ableitung und schließe daraus, welcher Art der stationäre Punkt ist.

2)
Ist die Hessematrix zudem symmetrisch, dann berechne ich die Determinante und kann ohne Einsetzen des Punktes gleich mit der Spur argumentieren.


Frage1:
Die Determinante berechne ich ja in beiden Fällen. Wieso folgt bei 1) die positive definitheit aus dem Wert des stationären Punktes in der 2. Ableitung?

Frage 2:
Bei 2) folgt wegen der symmetrie der Matrix, was bedeutet, dass die eigenwerte auf der Hauptdiagonalen liegen, dass definitheit aus der Spur abgelesen werden kann.
Die Spur ist aber doch die Summe der Diagonalelemente. Für positive Definitheit müssen doch aber alle Eigenwerte positiv sein, nicht? [mm] e_1 [/mm] =3, [mm] e_2 [/mm] = -1 auf der Diagonale ergäbe doch auch eine positive Summer.



Danke für eure Zeit!!!!!!!!!!!!!!!

        
Bezug
Zusammenhänge Hessem., Spur: Antwort
Status: (Antwort) fertig Status 
Datum: 05:55 Mi 25.02.2015
Autor: fred97

Sei A eine symmetrische 2x2 -Matrix und [mm] \lambda_1 [/mm] und [mm] \lambda_2 [/mm] ihre Eigenwerte.

Dann: [mm] spur(A)=\lambda_1+\lambda_2 [/mm] und  [mm] det(A)=\lambda_1*\lambda_2 [/mm]


Nachtrag:

1. A ist indefinit [mm] \gdw [/mm] det(A)<0.

2. A ist positiv definit [mm] \gdw [/mm] det(A)>0 und spur(A)>0

3. A ist negativ definit [mm] \gdw [/mm] det(A)>0 und spur(A)<0



FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de