www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Zusammenhängender metrischer R
Zusammenhängender metrischer R < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zusammenhängender metrischer R: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:31 Sa 22.02.2020
Autor: Psychopath

Wenn ich [mm] M=[0,1)\cup(1,2] [/mm] habe, und soll beweisen, dass diese Menge  unzusammenhängend ist, dann muss ich doch diese Menge durch die Vereinigung von zwei offenen, nicht-leeren Mengen ausdrücken können, sagt die Definition.

Wie würden diese offenen, nicht-leeren Mengen denn heißen? Bei der Vereinigung der zwei offenen Mengen [mm] (0,1)\cup(1,2) [/mm] würde ja die 0 bzw. die 2 fehlen.


NACHTRAG: Anscheinend sind [0,1) doch offen, es kommt wohl auf die Metrik an. Wollte den Beitrag daher löschen, habe aber das Löschfeld nicht gefunden. Sorry

        
Bezug
Zusammenhängender metrischer R: Antwort
Status: (Antwort) fertig Status 
Datum: 16:56 Sa 22.02.2020
Autor: fred97


> Wenn ich [mm]M=[0,1)\cup(1,2][/mm] habe, und soll beweisen, dass
> diese Menge  unzusammenhängend ist, dann muss ich doch
> diese Menge durch die Vereinigung von zwei offenen,
> nicht-leeren Mengen ausdrücken können, sagt die
> Definition.
>
> Wie würden diese offenen, nicht-leeren Mengen denn
> heißen? Bei der Vereinigung der zwei offenen Mengen
> [mm](0,1)\cup(1,2)[/mm] würde ja die 0 bzw. die 2 fehlen.
>
> NACHTRAG: Anscheinend sind [0,1) doch offen, es kommt wohl
> auf die Metrik an.

Ich habe Zweifel daran, ob Du das Richtige meinst. Zunächst habe wir  die übliche  Metrik
auf  [mm] \IR. [/mm] Diese schränken wir auf  M  ein. Mit dieser Einschränkung  ist M ein metrischer Raum.
Eine Teilmenge von M ist genau dann offen in M (in der  Spurtopologie ), wenn sie sich darstellen lässt als Schnitt von M mit einer in [mm] \IR [/mm] offenen Menge.

Die in obiger Darstellung von M beteiligten halboffenen Intervalle sind offen in M (warum? ).


> Wollte den Beitrag daher löschen, habe
> aber das Löschfeld nicht gefunden. Sorry


Bezug
                
Bezug
Zusammenhängender metrischer R: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 04:44 So 23.02.2020
Autor: Psychopath


> Die in obiger Darstellung von M beteiligten halboffenen Intervalle sind offen in M (warum? ).

Von mir vermutete Antwort:
Wenn ich einen metrischen Raum (M,d) habe, dann ist M automatisch offen.
Habe ich zumindest gerade im Internet gefunden.




Bezug
                        
Bezug
Zusammenhängender metrischer R: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:28 So 23.02.2020
Autor: fred97


> > Die in obiger Darstellung von M beteiligten halboffenen
> Intervalle sind offen in M (warum? ).
>  
> Von mir vermutete Antwort:
>  Wenn ich einen metrischen Raum (M,d) habe, dann ist M
> automatisch offen.
> Habe ich zumindest gerade im Internet gefunden.

Richtig ist, dass M offen ist. Das  beantwortet aber meine obige Frage  nicht.

>
>
>  


Bezug
                
Bezug
Zusammenhängender metrischer R: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:49 So 23.02.2020
Autor: Psychopath


> > Wenn ich [mm]M=[0,1)\cup(1,2][/mm] habe, und soll beweisen, dass
> > diese Menge  unzusammenhängend ist, dann muss ich doch
> > diese Menge durch die Vereinigung von zwei offenen,
> > nicht-leeren Mengen ausdrücken können, sagt die
> > Definition.
> >
> > Wie würden diese offenen, nicht-leeren Mengen denn
> > heißen? Bei der Vereinigung der zwei offenen Mengen
> > [mm](0,1)\cup(1,2)[/mm] würde ja die 0 bzw. die 2 fehlen.
> >
> > NACHTRAG: Anscheinend sind [0,1) doch offen, es kommt wohl
> > auf die Metrik an.
>  
> Ich habe Zweifel daran, ob Du das Richtige meinst.
> Zunächst habe wir  die übliche  Metrik
> auf  [mm]\IR.[/mm] Diese schränken wir auf  M  ein. Mit dieser
> Einschränkung  ist M ein metrischer Raum.
> Eine Teilmenge von M ist genau dann offen in M (in der  
> Spurtopologie ), wenn sie sich darstellen lässt als
> Schnitt von M mit einer in [mm]\IR[/mm] offenen Menge.
>
> Die in obiger Darstellung von M beteiligten halboffenen
> Intervalle sind offen in M (warum? ).

  
Das ist schwierig verbal  zu beschreiben (d.h. ohne Bild). Ich versuche es trotzdem mal: Die Zahl 2 ist auf dem Rand des Intervalls, hat aber trotzdem eine [mm] \varepsilon-Umgebung, [/mm] die ganz in M liegt, denn der metrische Raum endet ja bei der 2.

Mein Bauchgefühl sagt mir, dass man das noch schöner formulieren kann ;-)


Bezug
                        
Bezug
Zusammenhängender metrischer R: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:12 So 23.02.2020
Autor: tobit09

Hallo,

für mein Dafürhalten hast du den wesentlichen Punkt erfasst.

Formulierungsvorschlag für den Nachweis der Offenheit von $(1,2]$ in M:

Sei [mm] $x\in [/mm] (1,2]$ beliebig vorgegeben. Wähle [mm] $\varepsilon:=x-1>1-1=0$. [/mm] Dann gilt wie gewünscht [mm] $\{y\in M\;|\;|x-y|<\varepsilon\}\subseteq [/mm] (1,2]$: Sei nämlich [mm] $y\in [/mm] M$ mit [mm] $|x-y|<\varepsilon$. [/mm] Dann gilt wegen [mm] $y\in [/mm] M$ die Ungleichung [mm] $y\le [/mm] 2$ und wegen [mm] $x-y\le |x-y|<\varepsilon=x-1$ [/mm] auch $y>1$, so dass wie gewünscht [mm] $y\in(1,2]$ [/mm] folgt.

Alternativ geht es mit "Freds" Kriterium für Offenheit bezüglich Spurtopologie: Es genügt festzustellen, dass z.B. [mm] $(1,\infty)$ [/mm] eine in [mm] $\mathbb{R}$ [/mm] offene Menge ist, für die [mm] $(1,\infty)\cap [/mm] M=(1,2]$ gilt, um die Offenheit von $(1,2]$ in $M$ nachzuweisen.

Viele Grüße
Tobias

Bezug
                                
Bezug
Zusammenhängender metrischer R: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:07 Mi 04.03.2020
Autor: fred97


> Hallo,
>  
> für mein Dafürhalten hast du den wesentlichen Punkt
> erfasst.
>  
> Formulierungsvorschlag für den Nachweis der Offenheit von
> [mm](1,2][/mm] in M:
>  
> Sei [mm]x\in (1,2][/mm] beliebig vorgegeben. Wähle
> [mm]\varepsilon:=x-1>1-1=0[/mm]. Dann gilt wie gewünscht [mm]\{y\in M\;|\;|x-y|<\varepsilon\}\subseteq (1,2][/mm]:
> Sei nämlich [mm]y\in M[/mm] mit [mm]|x-y|<\varepsilon[/mm]. Dann gilt wegen
> [mm]y\in M[/mm] die Ungleichung [mm]y\le 2[/mm] und wegen [mm]x-y\le |x-y|<\varepsilon=x-1[/mm]
> auch [mm]y>1[/mm], so dass wie gewünscht [mm]y\in(1,2][/mm] folgt.
>  
> Alternativ geht es mit "Freds" Kriterium für Offenheit

Hallo Tobias,


das ist nicht mein Kriterium, sondern die Definition von Spurtopologie.




> bezüglich Spurtopologie: Es genügt festzustellen, dass
> z.B. [mm](1,\infty)[/mm] eine in [mm]\mathbb{R}[/mm] offene Menge ist, für
> die [mm](1,\infty)\cap M=(1,2][/mm] gilt, um die Offenheit von [mm](1,2][/mm]
> in [mm]M[/mm] nachzuweisen.
>  
> Viele Grüße
>  Tobias


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de