www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Graphentheorie" - Zusammenhang
Zusammenhang < Graphentheorie < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Graphentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zusammenhang: f.mehr o.weniger Interessierte
Status: (Frage) beantwortet Status 
Datum: 17:00 Fr 27.10.2006
Autor: margarita

Aufgabe
Es sei G = (V, K, [mm] \delta [/mm] : K [mm] \to [/mm] V [mm] \bar{x} [/mm] V) ein vollstaendiger Graph und es sei K = [mm] K_1 \cup K_2 [/mm] eine Zerlegung seiner Kantenmenge K.
Zeigen Sie:
[mm] G\cap K_1 [/mm] oderG [mm] \cap K_2 [/mm] ist zusammenhaengend.  

Hi!
Okay, ich weiss was zusammenhaengeng und was vollstaendig ist:
Ein Graph heisst zusammenhaengend, wenn je zwei Knoten verbindbar sind.
Ein Graph heisst vollstaendig, wenn er knotenregulaer vom Grad |V|-1 ist.
Aber da hoert es auch schon auf.
Wie fange ich ueberhaupt an??? Alles Hinweise wuerden mir helfen.
Vielen Dank im Voraus.



        
Bezug
Zusammenhang: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:19 Sa 28.10.2006
Autor: Bastiane

Hallo margarita,

> Es sei G = (V, K, [mm]\delta[/mm] : K [mm]\to[/mm] V [mm]\bar{x}[/mm] V) ein
> vollstaendiger Graph und es sei K = [mm]K_1 \cup K_2[/mm] eine
> Zerlegung seiner Kantenmenge K.
>  Zeigen Sie:
>  [mm]G\cap K_1[/mm] oderG [mm]\cap K_2[/mm] ist zusammenhaengend.
> Hi!
>  Okay, ich weiss was zusammenhaengeng und was vollstaendig
> ist:
>  Ein Graph heisst zusammenhaengend, wenn je zwei Knoten
> verbindbar sind.
>  Ein Graph heisst vollstaendig, wenn er knotenregulaer vom
> Grad |V|-1 ist.
>  Aber da hoert es auch schon auf.
>  Wie fange ich ueberhaupt an??? Alles Hinweise wuerden mir
> helfen.

Evtl. würde ein Widerspruchsbeweis helfen: Angenommen, weder [mm] G\cap K_1 [/mm] noch [mm] G\cap K_2 [/mm] ist zusammenhängend. Was müsste dann gelten? Da könnte dann nachher ein Widerspruch rauskommen und die Aussage wäre bewiesen.

Viele Grüße
Bastiane
[cap]

Bezug
        
Bezug
Zusammenhang: Antwort
Status: (Antwort) fertig Status 
Datum: 09:49 Di 31.10.2006
Autor: mathiash

Hallo und guten Morgen,

Bastianes Vorschlag aufgreifend könntest Du zB betrachten:

Wenn weder [mm] G\cap K_1 [/mm] noch [mm] G\cap K_2 [/mm] zush. sind, so seien

[mm] (V_1,V_2) [/mm] ein Cut, von dem keine Kante in [mm] K_1 [/mm] ist,
[mm] (U_1,U_2) [/mm] ein Cut, von dem keine Kante in [mm] K_2= \{\{u,v\}|u,v\in V,u\neq v\}\setminus K_1 [/mm] ist,

betrachte dann die vier Mengen [mm] V_i\cap U_j, i,j\in \{1,2\}. [/mm] Zeichne Dir zB V als Rechteck, den Cut [mm] (V_1,V_2) [/mm] als horizontale Linie
und den anderen Cut als vertikale Linie, so dass die vier Teilmengen die Mengen [mm] U_i\cap V_j [/mm] sind.

Gruss,

Mathias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Graphentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de