www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Statistik (Anwendungen)" - Zusammenhang Chi Quadrat Tests
Zusammenhang Chi Quadrat Tests < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zusammenhang Chi Quadrat Tests: Unabhängigkeits-und Verteilung
Status: (Frage) überfällig Status 
Datum: 19:24 Do 16.08.2007
Autor: schokochris

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich habe eine Frage über den Zusammenhang von Chi Quadrat Unabhängigkeitstest und Chi Quadrat Verteilungstest. Der eine Test prüft ob zwei Zufallsvariablen unabhängig sind, der andere ob sie die gleiche Verteilung haben.

Nun bin ich am überlegen ob die beiden Tests in meinem Fall nicht das gleiche ausdrücken.


Ich habe eine (nicht ganz zufällige) Stichprobe von (Internet)-Paketen jedes mit einer bestimmten Länge die aus einer Grundgesamtheit entnommen sind.

Ich will überprüfen ob das (nicht ganz zufällige) Stichprobenverfahren irgendwelche Pakete mit bestimmter Länge bevorzugt. Also wende ich den Chi Quadrat Unabhängikeitstest an.  Die Kontingenztafel hat dann die Spaltenköpfe (innnerhalb Stichprobe, außerhalb Stichprobe) und die Zeilenköpfe die Einträge (Längengruppe 1. Längengruppe 2 ...  n). Dann Prüfgröße aufstellen

S= [mm] \bruch{ \summe_{i=1}^{2} \summe_{j=1}^{n} h_{ij} - he_{ij}}{he_{ij}} [/mm]

wobei [mm] h_{ij} [/mm] die beobachteten Häufigkeiten sind und [mm] he_{ij} [/mm] die erwarteten (durch Multiplikaion der Randhäufigkeiten)

Ich erhalte hübsche Ergebnisse.

Nun will ich ebenfalls überprüfen, ob die Stichprobe denn auch repräsentativ für die Grundgesamtheit ist. Also wende ich den Verteilungstest an. Ich überprüfe ob die Verteilung der Paketlängen in der Stichproben der Verteilung der Paketlängen in der Grundgesamtheit entspricht. Meine Prüfgröße

R = [mm] \bruch{\summe_{i=1}^{n} p_{i} - pe_{i}}{pe_{i}} [/mm]

Also Quadratsumme der abweichungen von beobachteten Anteil der Längen i [mm] p_{i} [/mm] in der Stichprobe und [mm] pe_{i} [/mm] für den Anteil der Länge i in der Grundgesamtheit.


Die beiden Teststatistiken sehen nicht nur ähnlich aus, sondern ich erhalte auch fast gleiche Ergebnisse. Nun ist meine Frage: Wenn eine Stichprobe unabhängig von einem Attribut ist, ist es dann auch immer so, dass die Verteilung des Attrbuts in der Stichprobe und der Grundgesamtheit gleich ist? Kann es sein, dass keine Unabhängigkeit vorliegt aber die Verteilung doch gleich ist?

Mein Inneres sagt mir das ich zweimal die gleiche Aussage treffe, kann aber weder Formel noch Ansatz logsich überführen ...

Vielen Dank für eure Hilfe

Christian





        
Bezug
Zusammenhang Chi Quadrat Tests: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Mi 22.08.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de