www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Zwei Glücksräder
Zwei Glücksräder < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zwei Glücksräder: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:31 Di 07.09.2004
Autor: BelaFarinRod

Ich habe eine Frage zu der richtigen Schreibweise einer Aufgabe. Das Ergebnis ist mir eigentlich bekannt, denke ich.

Also, hier die Aufgabe:

Zwei Glücksräder mit je 10 Sektoren, die jeweils von 0 bis 9 nummeriert sind, werden gedreht. Berechnen Sie die Wahrscheinlichkeit für das Ereignis, dass die Punktsumme genau 9 beträgt.

Die Wahrscheinlichkeit müsste logischerweise   ( [mm] \bruch{1}{18} [/mm] ) betragen, richtig?
Doch nun das eigentliche Problem, die Schreibweise: Wie stelle ich zunächst das Ereignis und dann die Wahrscheinlichkeit P(E) richtig dar?

Hoffe, ihr könnt mir helfen!

mfg
BelaFarinRod

Ich habe diese Frage in keinem weiteren Forum gestellt.

        
Bezug
Zwei Glücksräder: Antwort
Status: (Antwort) fertig Status 
Datum: 21:19 Di 07.09.2004
Autor: Brigitte

Hallo BelaFarinRod!

> Zwei Glücksräder mit je 10 Sektoren, die jeweils von 0 bis
> 9 nummeriert sind, werden gedreht. Berechnen Sie die
> Wahrscheinlichkeit für das Ereignis, dass die Punktsumme
> genau 9 beträgt.
>  
> Die Wahrscheinlichkeit müsste logischerweise   (
> [mm]\bruch{1}{18}[/mm] ) betragen, richtig?

Wie kommst Du darauf? Ein bisschen ausführlicher müsstest Du schon werden...

> Doch nun das eigentliche Problem, die Schreibweise: Wie
> stelle ich zunächst das Ereignis und dann die
> Wahrscheinlichkeit P(E) richtig dar?

Zunächst solltest Du Dir eine Ergebnismenge definieren, die z.B. aus allen Paaren $(a,b)$ besteht,
wobei $a$ das Ergebnis des 1. Glücksrades und $b$ das Ergebnis des 2. Glücksrades bezeichnet. Natürlich gilt dann [mm] $a,b\in\{0,1,\ldots,9\}$. [/mm] Nun kann man argumentieren, dass ein Laplace-Experiment vorliegt (wie?). Daraus ergibt sich für die Wahrscheinlichkeit eines beliebigen Ereignisses $A$:

[mm] P(A)=\frac{\mbox{Anzahl der günstigen Ergebnisse für }A}{\mbox{Anzahl der insgesamt möglichen Ergebnisse}}[/mm]

Den Nenner bekommst Du, indem Du zählst, wie viele Elemente die gesamte Ergebnismenge hat. Den Zähler, indem  Du zählst, wie viele Ergebnisse der Ergebnismenge zum Ereignis $A$ gehören. Bei Deinem Ereignis gehört z.B. das Ergebnis $(0,9)$ dazu, genauso wie $(9,0)$ und noch einige mehr; eben alle Ergebnisse $(a,b)$ mit $a+b=9$.

Bekommst Du es nun alleine hin?

Viel Erfolg
Brigitte

Bezug
                
Bezug
Zwei Glücksräder: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:21 Di 07.09.2004
Autor: BelaFarinRod

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Ja, vielen Dank! Die Annahme, dass Ergebnis sei $ \bruch{1}{18} $ ist somit natürlich falsch. Ich bin mir ziemlich sicher, dass bei 2 Glückrädern mit jeweils zehn verschiedenen Feldern die Anzahl der Möglichkeiten $ 2^{10} $ beträgt, also 1024, während die Anzahl der günstigen Ereignisse für  $ (a,b) $ mit $ a + b = 9 $ 10 beträgt.
Daher müsste für die Wahrscheinlichkeit gelten: P(A)= $ \left( \bruch{10}{1024} \right) } $ was einem Prozentsatz von 0,9 % entspricht.
Ich hoffe, meine Rechnung ist nun richtig!?

mfg
BelaFarinRod

Bezug
                        
Bezug
Zwei Glücksräder: Antwort
Status: (Antwort) fertig Status 
Datum: 22:35 Di 07.09.2004
Autor: Brigitte

Lieber Michael!

> Ja, vielen Dank! Die Annahme, dass Ergebnis sei
> [mm]\bruch{1}{18}[/mm] ist somit natürlich falsch.

[ok]

> Ich bin mir
> ziemlich sicher, dass bei 2 Glückrädern mit jeweils zehn
> verschiedenen Feldern die Anzahl der Möglichkeiten [mm]2^{10}[/mm]
> beträgt, also 1024,

[notok] Leider nein. Magst Du nochmal darüber nachdenken? Deine Antwort würde ja bedeuten, dass es

[mm] \underbrace{2\cdot \ldots\cdot 2}_{10 \mbox{-mal}}[/mm]

Möglichkeiten gäbe. Merkst Du, dass was nicht stimmt?

> während die Anzahl der günstigen
> Ereignisse für  [mm](a,b)[/mm] mit [mm]a + b = 9[/mm] 10 beträgt.

[ok] Sehr gut.

> Daher müsste für die Wahrscheinlichkeit gelten: P(A)=
> [mm]\left( \bruch{10}{1024} \right) }[/mm] was einem Prozentsatz von
> 0,9 % entspricht.

Folgefehler...

Liebe Grüße
Brigitte

P.S.: Nie wieder Hütchenspielen... ;-) [pfeif]

Bezug
                                
Bezug
Zwei Glücksräder: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:56 Di 07.09.2004
Autor: BelaFarinRod

Nabend Brigitte!

Erstmal vielen Dank für deine Antwort!
Da ich ja 2 Tische habe mit jeweils 10 verschiedenen Möglichkeiten und diese Ergebnisse nochmal miteinander getauscht werden können, müsste das bedeuten, dass es für die Anzahl der Ereignisse  2 [mm] \cdot 10^{2} [/mm] Möglichkeiten gibt? Oder doch nur [mm] 10^{2}. [/mm] Dann würde sich allerdings eine Wahrscheinlichkeit von 10 % ergeben, was ich für zu hoch einschätze. Hmm...
Ich habe absolut keine Ahnung wie ich alle möglichen Ereignisse berechnen soll, bitte, bitte: Erklärt es mir!

mfg
BelaFarinRod

Bezug
                                        
Bezug
Zwei Glücksräder: Antwort
Status: (Antwort) fertig Status 
Datum: 23:03 Di 07.09.2004
Autor: Brigitte

Hallo Michael!

> Erstmal vielen Dank für deine Antwort!
> Da ich ja 2 Tische habe mit jeweils 10 verschiedenen
> Möglichkeiten

Das ist der richtige Ansatz!

> und diese Ergebnisse nochmal miteinander
> getauscht werden können, müsste das bedeuten, dass es für
> die Anzahl der Ereignisse  2 [mm]\cdot 10^{2}[/mm] Möglichkeiten
> gibt?

Wieso getauscht? Wir modellieren die Ergebnismenge ja so, dass wir die Glücksräder voneinander unterscheiden können (1. und 2. Glücksrad). Damit ist $(4,5)$ ein anderes Ergebnis als $(5,4)$. Beide sind in den [mm] $10^2$ [/mm] Möglichkeiten enthalten.

> Oder doch nur [mm]10^{2}.[/mm]

Genau.

> Dann würde sich allerdings eine
> Wahrscheinlichkeit von 10 % ergeben, was ich für zu hoch
> einschätze. Hmm...

Doch, das stimmt schon. Kann man sich auch so verdeutlichen:
Zu jeder Zahl, die beim 1. Glücksrad auftritt, gibt es genau eine entsprechende Zahl (von 10) auf dem 2. Glücksrad, so dass die Gesamtsumme aus beiden Punkten 9 ergibt. Deshalb ist $1/10$ absolut in Ordnung.

Liebe Grüße
Brigitte


Bezug
                                                
Bezug
Zwei Glücksräder: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:07 Di 07.09.2004
Autor: BelaFarinRod

Danke, Danke!!! Du hast mir sehr geholfen. Ich hoffe mal, ich hab mich nicht allzu dumm angestellt!

mfg
BelaFarinRod

Bezug
                                                        
Bezug
Zwei Glücksräder: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:10 Di 07.09.2004
Autor: Brigitte


> Danke, Danke!!!

Bitte, bitte!!!

> Du hast mir sehr geholfen. Ich hoffe mal,
> ich hab mich nicht allzu dumm angestellt!

Ach Quatsch. Es gibt keine dummen Fragen, nur dumme Antworten ;-)

Hauptsache, Du hast was dabei gelernt und kannst es demnächst umsetzen.

Gute Nacht
Brigitte

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de