www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Zwei Integrale: Richtig?
Zwei Integrale: Richtig? < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zwei Integrale: Richtig?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:17 Fr 03.02.2017
Autor: tobi91_nds

Aufgabe
Berechne folgende zwei Integrale:
[mm] $lim_{n\rightarrow\infty}\int_0^\infty\left(1+\frac{x}{n}\right)^n\cdot e^{-x}dx$ [/mm]
[mm] $lim_{n\rightarrow\infty}\int_0^1\left(1-\frac{x}{n}\right)^n\cdot e^{-x}dx$ [/mm]

Diese beiden Integrale sind sehr ähnlich. Ich glaube, dass die in einem gemeinsamen Thread deswegen gut aufgehoben sind. Falls nicht: Sorry, meine Absicht war, das ganze übersichtlicher zu gestalten ;-)


Zum ersten Integral: [mm] $\left(1+\frac{x}{n}\right)^n\cdot e^{-x}$ [/mm] konvergiert gegen [mm] $e^{x} e^{-x}=1$. [/mm] Die Frage ist: Darf ich in einem uneigentlichen Lebesgue-Integral den Limes einfach so in das Integral reinziehen?
[mm] $lim_{n\rightarrow\infty}\int_0^\infty\left(1+\frac{x}{n}\right)^n\cdot e^{-x}dx [/mm] = [mm] \int_0^\infty lim_{n\rightarrow\infty}\left(1+\frac{x}{n}\right)^n\cdot e^{-x}dx [/mm] = [mm] \int_0^\infty e^{x}\cdot e^{-x}dx [/mm] = [mm] \int_0^\infty [/mm] 1dx = [mm] \infty$ [/mm]


Das zweite Integral sieht einfacher aus. [mm] $\left(1-\frac{x}{n}\right)^n\cdot e^{-x} [/mm] < [mm] 2e^{-x} =:g\left(x\right) \forall n\in\mathbb{N}$ [/mm] Mit dem Satz über dominierte konvergenz von Lebesgue ergibt sich dann:
[mm] $lim_{n\rightarrow\infty}\int_0^1\left(1-\frac{x}{n}\right)^n\cdot e^{-x}dx [/mm] = [mm] \int_0^1lim_{n\rightarrow\infty}\left(1-\frac{x}{n}\right)^n\cdot e^{-x}dx [/mm] = [mm] \int_0^1e^{-x}\cdot e^{-x}dx [/mm] = [mm] \int_0^1e^{-x}\cdot e^{-2x}dx [/mm] = [mm] \left[-\frac{1}{2}e^{-2x}\right]_{x=0}^{x=1} [/mm] = [mm] \frac{1}{2}\left(1-e^{-2}\right)$ [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Zwei Integrale: Richtig?: Antwort
Status: (Antwort) fertig Status 
Datum: 15:34 Fr 03.02.2017
Autor: Gonozal_IX

Hiho,

> Die Frage ist: Darf ich in einem uneigentlichen Lebesgue-Integral den Limes einfach so in das Integral reinziehen?

Das ist hier die Frage!

> Mit dem Satz über dominierte konvergenz von Lebesgue ergibt sich dann:

Du kennst also Sätze, wann du Integration und Grenzwertbildung vertauschen darfst.
Warum überprüfst du nicht, ob diese hier gegeben sind?

Welchen Satz neben dem von Lebesgue kennst du denn noch?

edit: Und spaßeshalber kannst du zur Kontrolle die Integrale mal mit partieller Integration berechnen :-)

Gruß,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de