www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Trigonometrische Funktionen" - Zwei trigonometrische Funktion
Zwei trigonometrische Funktion < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zwei trigonometrische Funktion: Aufgaben
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:03 Do 29.06.2006
Autor: Schnecke88

Aufgabe
Untersuchen Sie den Graphen von f im Peridoenintervall (0;3 [mm] \pi) [/mm] auf Schnittpunkte mit der x-Achse sam teigung sowie auf Extrem-, Wende- und Nullstellen. Geben Sie die Periodenlänge an und leiten sie die Funktion bis zur dritten Ableitung ab. Bestimmen sie die Stammfunktion und berechnen sie dann den Flächeninhalt (0;3 [mm] \pi) [/mm]
a) f(x)=sin(0,5x)   b)3cos(0,5x)

Kann mir bitte einer helfen? bin echt am verzweifeln, weil ich die aufgaben einfach nicht herausbekomme....Bitte!

ich weiß das die Stammfunktion von a) -2cos(x) ist oder nicht?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Zwei trigonometrische Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:35 Do 29.06.2006
Autor: M.Rex


> Untersuchen Sie den Graphen von f im Peridoenintervall (0;3
> [mm]\pi)[/mm] auf Schnittpunkte mit der x-Achse sam teigung sowie
> auf Extrem-, Wende- und Nullstellen. Geben Sie die
> Periodenlänge an und leiten sie die Funktion bis zur
> dritten Ableitung ab. Bestimmen sie die Stammfunktion und
> berechnen sie dann den Flächeninhalt (0;3 [mm]\pi)[/mm]
>  a) f(x)=sin(0,5x)   b)3cos(0,5x)
>  Kann mir bitte einer helfen? bin echt am verzweifeln, weil
> ich die aufgaben einfach nicht herausbekomme....Bitte!
>  

Hallo Sarah

> ich weiß das die Stammfunktion von a) -2cos(x) ist oder
> nicht?

Fast, mit Hilfe der Kettenregel (innere mal äussere Ableitung) erhältst du aus:

f(x) = sin [mm] (\bruch{1}{2} [/mm] x)
f'(x) =  [mm] \underbrace{\bruch{1}{2}}_{innere Abl.} [/mm] *  [mm] \underbrace{cos (\bruch{1}{2} x)}_{aeussere Abl.} [/mm]
und mit dem gleichen Verfahren:
f´´(x) = - [mm] \bruch{1}{4} [/mm] * sin [mm] (\bruch{1}{2} [/mm] x) (Nach Zusammenfassen!!)
und
[mm] f^{(3)} [/mm] = - [mm] \bruch{1}{8} [/mm] * cos [mm] (\bruch{1}{2} [/mm] x).

Das sollte weiterhelfen, die Nullstellen, Extremstellen und Wendestellen zu berechnen.

Zu b)

f(x) = 3 cos [mm] (\bruch{1}{2} [/mm] x)
f´(x) = - [mm] \bruch{3}{2} [/mm] sin [mm] (\bruch{1}{2} [/mm] x)
f´´(x) = - [mm] \bruch{3}{4} [/mm] cos [mm] (\bruch{1}{2} [/mm] x)
und [mm] f^{(3)}(x) [/mm] = [mm] \bruch{3}{8} [/mm] sin [mm] (\bruch{1}{2} [/mm] x)

Funktioniert wie Teil a)

Zu weiteren Fragen und zur Kontrolle kannst du die Graphen ja mal mit
[]Funkyplot skizzieren.

Ich hoffe, das hilft ein wenig weiter.

Marius

Bezug
                
Bezug
Zwei trigonometrische Funktion: rückfrage
Status: (Frage) beantwortet Status 
Datum: 12:21 Fr 30.06.2006
Autor: Schnecke88

Ja das kann ich ja noch so einigermaßen, aber ich kann das mit diesem intervall nicht un weiß auch nicht wie man bei so einer komplizierten funktion die extremstellen, null- und wendestellen ausrechnet...komme einfach nicht drauf!

Bezug
                        
Bezug
Zwei trigonometrische Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 13:21 Fr 30.06.2006
Autor: M.Rex

Hallo

Naja, der Sinus nimmt an den Stellen 0, [mm] \pi, 2\pi... [/mm] also allgemein
an den ganzzahligen Vielfachen von [mm] \pi [/mm] den Wert 0 an.

Also musst du den Term innerhalb der Sinusfunktion = k * [mm] \pi [/mm] setzen.
Du sollst aber, wenn ich die Aufgabe richtig verstehe nur in Intervall
von = bis [mm] 3\pi [/mm] bleiben. Also stelle jeweils vier Gleichungen auf
(argument = [mm] \pi [/mm] , Argument = [mm] 2\pi; [/mm] Argument = [mm] 3\pi [/mm] und Argument = 0).

Die Cosinusfunktion ist um [mm] \bruch{\pi}{2} [/mm] verschoben, also musst du jeweils noch [mm] \bruch{\pi}{2} [/mm] dazuaddieren

Hilft das weiter?

Marius

Bezug
                                
Bezug
Zwei trigonometrische Funktion: Keine ahnung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:27 Sa 01.07.2006
Autor: Schnecke88

ich bekomme das einfach nicht hin...kann mir vielleicht einer die aufgabe komplett rechnen, damit ich sie dann nachvollziehen kann...das würde mir mehr helfen...muss nur verstehn wie das geht....

Bezug
                                        
Bezug
Zwei trigonometrische Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:01 So 02.07.2006
Autor: M.Rex

Hi,

nehmen wir mal die erste Funktion.

f(x) = sin (0,5x)

Jetzt gilt, wie schon gesagt, dass die Nullstellen der Sinusfunktion bei den ganzzahligen Vielfachen von [mm] \pi [/mm] liegen.

Also muss das Argument innerhalb der Funktion genau ei solches Vielfaches sein.
Zwischen 0 und [mm] 3\pi [/mm] liegen jetzt jenau 4 solcher ganzzahligen Vielfachen. (0, [mm] \pi, 2\pi, 3\pi) [/mm]
Also sind die Nullstelle mit folgenden Gleichungen zu ermitteln:

a) 0 = 0,5x
b) [mm] \pi [/mm] = 0,5x
c) [mm] 2\pi [/mm] =0,5x
d) [mm] 3\pi [/mm] = 0,5x

Für den Cosinus, der ja um [mm] \bruch{\pi}{2} [/mm] verschoben ist, musst du auf der Linken Seite der Gleichungen a) -c) jeweils noch [mm] \bruch{\pi}{2} [/mm] dazuaddieren. (Gleichung d) fällt weg, weil [mm] 3\pi [/mm] der Rand dienes gesuchten Intervalles ist.)

Also folgende Gleichungen lösen
1) [mm] \bruch{\pi}{2} [/mm] = 0,5x
2) [mm] \pi +\bruch{\pi}{2} [/mm] = 0,5x
3) [mm] 2\pi [/mm] + [mm] \bruch{\pi}{2} [/mm] = 0,5x

Da sich das Argument der Funktion in den Ableitungen nicht verändert, funktionieren alle Teile (Extremstellen, Wendestellen und die zweite Funktion genauso)

Ich habe hier zur Hilfe noch ein Bild der ersten Funktion mit ihren ersten beiden Ableitungen.

[Dateianhang nicht öffentlich]

Hilft das jetzt weiter?

Marius



Dateianhänge:
Anhang Nr. 1 (Typ: jpeg) [nicht öffentlich]
Bezug
                                                
Bezug
Zwei trigonometrische Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:05 So 02.07.2006
Autor: Schnecke88

Hmmm...okay...hab aber immer noch keinen plan wie ich das andere ausrechne! und diese gleichung muss ich nur auflösen und hab ich die nullstellen oder was?

Bezug
                                                        
Bezug
Zwei trigonometrische Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:48 So 02.07.2006
Autor: M.Rex

Hi,

Die jeweiligen Gleichungen a)-d) und 1)-3) musst du nach x auflösen, dann bekommst du deine Ergebnisse. (Tipp: Multipliziere beide Seiten mit 2, dann steht das Ergebnis da..., Dann noch vereinfachen)

Da sich der Term in den Klammern der Funktionen (den meine ich mit ARGUMENT), beim Ableiten ja nicht ändert, gibt es für die erste Funktion die vier Gleichungen a) -d) für die Nullstellen und die Wendestellen und die drei Gleichungen 1)-3) für die Extremstellen.

Bei der zweiten Funktion gibt es, da sie mit einem Cosinustem beginnt, dementsprechend drei Gleichungen für Null- und Wendestellen und vier für Extremstellen.


Marius

Bezug
                                                                
Bezug
Zwei trigonometrische Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:59 Mo 03.07.2006
Autor: Schnecke88

okay das habe ich jetzt verstanden und wie komme ich auf die periodenlänge und die schnittpunkte samt steigung?

Bezug
                                                                        
Bezug
Zwei trigonometrische Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:35 Di 04.07.2006
Autor: M.Rex

Hi,

Für die Schnittpunkte musst du die beiden Funktionen gleichsetzen, und dann nach x auflösen.
Evtl. brauchst du dafür die sogenannten []Additionstheoreme .

Die Steigung an den Nullstellen (die hast du ja berechnet) ist der Wert der Ableitung der Funktion an diesen Stellen. (Die Ableitung ist ja quasi die "Steigungsfunktion", sie gibt dir die Steigung an einem Punkt an. (dieses gilt für alle Arten von Funktionen))

Die Periode einer Funktion ist die Länge, ab der sich die Funktionswerte wiederholen. für die Sinus- und Cosinusfunktion sind das 360° oder, in die Bogenlänge umgerechnet, 2 [mm] \pi. [/mm]
Zur Veranschaulichung: Zeichne mal innerhalb eines Kreises den Winkel von 360° ein.

Ich hoffe, das beantwortet die Fragen

Marius

Bezug
                                                                                
Bezug
Zwei trigonometrische Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:31 Di 04.07.2006
Autor: Schnecke88

Hi

ich hab da nochmal ne frage zu den extremstellen und den wendestellen...kannst du mir mal den rechenweg aufschreiben? denn um die stellen raus zu bekommen muss man ja die nullstellen der 1. ableitung und bei den wendestellen der 2. ableitung ausrechnen und dann nach x umstellen! aber wie bekomme ich den sinus bzw. den cosinus da weg?

Bezug
                                                                                        
Bezug
Zwei trigonometrische Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:59 Di 04.07.2006
Autor: M.Rex


> Hi
>  
> ich hab da nochmal ne frage zu den extremstellen und den
> wendestellen...kannst du mir mal den rechenweg
> aufschreiben? denn um die stellen raus zu bekommen muss man
> ja die nullstellen der 1. ableitung und bei den
> wendestellen der 2. ableitung ausrechnen und dann nach x
> umstellen! aber wie bekomme ich den sinus bzw. den cosinus
> da weg?

Hi

Ich denke, ich versuche es mal ganz ausführlich.

Du suchst die Nullstellen von f(x)=sin(0,5x).
Also soll gelten sin [mm] (0,5x_{0}) [/mm] = 0.
Jetzt weisst du, das sin (0) = 0.
Also gilt: [mm] \underbrace{0,5 x_{0_{1}}}_{Das ist das Funktionsargument} [/mm] = 0 [mm] \Rightarrow x_{0_{1}} [/mm] = 0
Weiter gilt [mm] sin(\pi) [/mm] = 0 [mm] \Rightarrow [/mm] 0,5 [mm] x_{0_{2}} [/mm] = [mm] \pi \Rightarrow x_{0_{2}} [/mm] = 2 [mm] \pi [/mm]
Jetz gilt auch noch [mm] sin(2\pi) [/mm] = 0 und [mm] sin(3\pi) [/mm] = 0, also kannst du mit obigem Weg auch noch [mm] x_{0_{3}} [/mm] und [mm] x_{0_{4}} [/mm] berechnen.

Für die Ableitungen, in denen die Sinus-Fkt. vorkommt, gilt dasselbe.
Für Cos-Fkt. gilt:
[mm] cos(\bruch{\pi}{2}) [/mm] = 0, also gilt für die erste Ableitung
0,5 [mm] x_{e_{1}} [/mm] = [mm] \bruch{\pi}{2} \Rightarrow x_{e_{1}} [/mm] = [mm] \pi [/mm]
Weiter gilt [mm] cos(\bruch{3}{2} \pi) [/mm] = 0 [mm] \Rightarrow \bruch{3}{2} \pi [/mm] = [mm] \underbrace{\bruch{x_{e_{2}}}{2}}_{=0,5 x_{e_{2}}} \Rightarrow x_{e_{2}} [/mm] = 3 [mm] \pi [/mm]
Und es gilt [mm] cos(\bruch{5}{2}*\pi) [/mm] = 0 [mm] \Rightarrow [/mm] 0,5 [mm] x_{e_{3}} [/mm] = [mm] \bruch{5}{2}*\pi. \Rightarrow x_{e_{3}} [/mm] = ?.


Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de