www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Zweite Ableitung
Zweite Ableitung < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zweite Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:10 Fr 02.01.2009
Autor: Palonina

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
Sei $f: [a,b] \rightarrow  \IR$ zweimal differenzierbar, $x_0 \in ]a,b[$. Dann gilt \\

$\lim_{x\rightarrow x_0}\frac{\frac{f(x)-f(x_0)}{x-x_0}-f'(x_0)}{x-x_o}= \frac{1}{2} f''(x_0)$.

Hallo zusammen,

ich habe die Gleichung durch Umformungen in eine wahre Aussage überführt und wollte fragen, ob das formal so ok geht:

$\lim_{x\rightarrow x_0}\frac{\frac{f(x)-f(x_0)}{x-x_0}-f'(x_0)}{x-x_o}=\frac{1}{2}\lim_{x\rightarrow x_0}\frac{f'(x)-f'(x_0)}{x-x_o}$

Jetzt multipliziere ich die Gleichung mit $x-x_0$ und betrachte rechts den Limes und erhalte dann

$\lim_{x\rightarrow x_0}\frac{f(x)-f(x_0)}{x-x_0}-f'(x_0)}=0$ und das ist ja die Definition der Ableitung $\lim_{x\rightarrow x_0}\frac{f(x)-f(x_0)}{x-x_0}=f'(x_0)}$ und daher eine wahre Aussage.

Gruß
Palonina

        
Bezug
Zweite Ableitung: Gegenfrage
Status: (Antwort) fertig Status 
Datum: 11:00 Fr 02.01.2009
Autor: statler

Hi!

> Sei [mm]f: [a,b] \rightarrow \IR[/mm] zweimal differenzierbar, [mm]x_0 \in ]a,b[[/mm].
> Dann gilt [mm]\\[/mm]
>  
> [mm]\lim_{x\rightarrow x_0}\frac{\frac{f(x)-f(x_0)}{x-x_0}-f'(x_0)}{x-x_o}= \frac{1}{2} f''(x_0)[/mm].
>  
> Hallo zusammen,
>  
> ich habe die Gleichung durch Umformungen in eine wahre
> Aussage überführt und wollte fragen, ob das formal so ok
> geht:
>  
> [mm]\lim_{x\rightarrow x_0}\frac{\frac{f(x)-f(x_0)}{x-x_0}-f'(x_0)}{x-x_o}=\frac{1}{2}\lim_{x\rightarrow x_0}\frac{f'(x)-f'(x_0)}{x-x_o}[/mm]
>  
> Jetzt multipliziere ich die Gleichung mit [mm]x-x_0[/mm] und
> betrachte rechts den Limes und erhalte dann
>  
> [mm]\lim_{x\rightarrow x_0}\frac{f(x)-f(x_0)}{x-x_0}-f'(x_0)}=0[/mm]
> und das ist ja die Definition der Ableitung
> [mm]\lim_{x\rightarrow x_0}\frac{f(x)-f(x_0)}{x-x_0}=f'(x_0)}[/mm]
> und daher eine wahre Aussage.

Ich will dir mal eben kurz zeigen, daß 0 = 1 ist. Dazu subtrahiere ich auf beiden Seiten [mm] $\bruch{1}{2}$, [/mm] das gibt [mm] $-\bruch{1}{2}$ [/mm] = [mm] $\bruch{1}{2}$. [/mm] Jetzt quadriere ich beide Seiten, das gibt [mm] $\bruch{1}{4}$ [/mm] = [mm] $\bruch{1}{4}$. [/mm] Damit habe ich meine ursprüngliche Gleichung in eine wahre Aussage überführt. Ist das so OK?

Gruß aus HH-Harburg
Dieter


Bezug
                
Bezug
Zweite Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:22 Fr 02.01.2009
Autor: Palonina

Hallo Dieter,

ok, aber quadrieren ist keine Äquivalenzumformung; mit 0 darf man Gleichungen auch nicht multiplizieren, sonst könnte man jede falsche Aussage in ein "0=0" umformen.

Solange ich nur erlaubte Äquivalenzumformungen durchführe, könnte man so doch aber eine Aussage beweisen.
Ist es problematisch, dass ich mit [mm] $x-x_0$ [/mm] multipliziere oder wolltest du mich darauf aufmerksam machen, dass meine Aussage zu allgemein fomuliert war und dies nur bei Äuivalenzumformungen gilt?

Gruß,
Palonina

Bezug
                        
Bezug
Zweite Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:30 So 04.01.2009
Autor: statler

Hi!

> Ist es problematisch, dass ich mit [mm]x-x_0[/mm] multipliziere oder
> wolltest du mich darauf aufmerksam machen, dass meine
> Aussage zu allgemein fomuliert war und dies nur bei
> Äuivalenzumformungen gilt?

Ich wollte dich darauf aufmerksam machen, daß bei einem Beweis der Weg vom Bekannten zum zu Beweisenden geht, das müssen nicht unbedingt Äquivalenzumformungen sein. Auf dem Schmierzettel, also bei seinen Vorüberlegungen, macht man es normalerweise natürlich umgekehrt, aber in der Reinschrift hat die Vorgehensweise wie oben zu sein.

Gruß aus HH-Harburg
Dieter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de