www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Zwillingsgeburten - Wahrsch.
Zwillingsgeburten - Wahrsch. < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zwillingsgeburten - Wahrsch.: Lösungsansatz
Status: (Frage) beantwortet Status 
Datum: 09:58 Mo 26.09.2005
Autor: igel64

Hallo,

ich finde irgendwie nicht den richtigen Ansatz zur Berechnung.

Es gibt zwei Arten von Zwillingen: eineiige und zweieiige.  .... folgende Zwillingsgeburten gezählt:

21810 mal 2 Knaben
18006 mal 1 Knabe und ein Mädchen
21476 mal 2 Mädchen

a) Wahrscheinlichkeit Knabengeburten - erledigt  - (KKee+KKzw+KMzw)
b) Wahrscheinlichkeit KK, KM, MM - erledigt
C) x sei die Wahrscheinlichkeit dafür, daß eine Zwillingsgeburt eineiig ist. Berechnen Sie die Wahrscheinlichkeit einer eineiigen Zwillingsgeburt.

In den Angaben für 2 Knaben und 2 Mädchen stecken ja auch die Wahrscheinlichkeit für die eineiige und zweieiige Geburt. Wie bekomme ich die getrennt?  :-(  Ich habe es über verschiedene Rechenwege probiert - u.a.a. über LGS - aber sinnlose Ergebnisse.

Wie kann ich diese Aufgabe lösen? In welche Richtung muß ich denken?

mfg
Igel

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: http://www.uni-protokolle.de


        
Bezug
Zwillingsgeburten - Wahrsch.: Vielleicht so?
Status: (Antwort) fertig Status 
Datum: 10:18 Mo 26.09.2005
Autor: statler

Hallo Igel!
>  
> ich finde irgendwie nicht den richtigen Ansatz zur
> Berechnung.
>  
> Es gibt zwei Arten von Zwillingen: eineiige und zweieiige.  
> .... folgende Zwillingsgeburten gezählt:
>  
> 21810 mal 2 Knaben
>  18006 mal 1 Knabe und ein Mädchen
>  21476 mal 2 Mädchen
>  
> a) Wahrscheinlichkeit Knabengeburten - erledigt  -
> (KKee+KKzw+KMzw)
>  b) Wahrscheinlichkeit KK, KM, MM - erledigt
>  C) x sei die Wahrscheinlichkeit dafür, daß eine
> Zwillingsgeburt eineiig ist. Berechnen Sie die
> Wahrscheinlichkeit einer eineiigen Zwillingsgeburt.

Bei 2eiigen Zwillingsgeburten gibt es hoffentlich genausoviele gleichgeschlechtliche Paare wie gemischt-geschlechtliche, wenn wir mal so tun, als wäre die Wahrscheinlichkeit für einen Jungen genauso groß wie für ein Mädchen, nämlich 1/2. (Ich weiß, daß das nicht stimmt, Knabengeburten sind etwas häufiger!) Die gemischt-geschlechtlichen Paare sind aber aus biologischen Gründen 2eiig. Dann kannst du ausrechnen, wie viele eineiige Paare überbleiben und dann auch die W. bestimmen.

> In den Angaben für 2 Knaben und 2 Mädchen stecken ja auch
> die Wahrscheinlichkeit für die eineiige und zweieiige
> Geburt. Wie bekomme ich die getrennt?  :-(  Ich habe es
> über verschiedene Rechenwege probiert - u.a.a. über LGS -
> aber sinnlose Ergebnisse.
>
> Wie kann ich diese Aufgabe lösen? In welche Richtung muß
> ich denken?
>  

Gruß aus HH-Harburg
Dieter


Bezug
        
Bezug
Zwillingsgeburten - Wahrsch.: deine Lösung richtig?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:48 Mo 26.09.2005
Autor: Bastiane

Hallo!

> Es gibt zwei Arten von Zwillingen: eineiige und zweieiige.  
> .... folgende Zwillingsgeburten gezählt:
>  
> 21810 mal 2 Knaben
>  18006 mal 1 Knabe und ein Mädchen
>  21476 mal 2 Mädchen
>  
> a) Wahrscheinlichkeit Knabengeburten - erledigt  -
> (KKee+KKzw+KMzw)

Heißt das, du hast die ersten beiden Zahlen einfach addiert? Ich glaube, das ist aber nicht richtig. Weil du da ja, wie du unten selber schreibst, die Mädchen mit drin hast und die irgendwie da rausbekommen müsstest.

>  b) Wahrscheinlichkeit KK, KM, MM - erledigt
>  C) x sei die Wahrscheinlichkeit dafür, daß eine
> Zwillingsgeburt eineiig ist. Berechnen Sie die
> Wahrscheinlichkeit einer eineiigen Zwillingsgeburt.

Ist es nicht so, dass die Zahlen für 2 Knaben und 2 Mädchen genau die eineiigen sind? Aber wahrscheinlich doch nicht, sonst gäbe es ja keine zweieiigen gleichgeschlechtlichen.
  

> In den Angaben für 2 Knaben und 2 Mädchen stecken ja auch
> die Wahrscheinlichkeit für die eineiige und zweieiige
> Geburt. Wie bekomme ich die getrennt?  :-(  Ich habe es
> über verschiedene Rechenwege probiert - u.a.a. über LGS -
> aber sinnlose Ergebnisse.

Viele Grüße
Bastiane
[banane]


Bezug
        
Bezug
Zwillingsgeburten - Wahrsch.: Gegenereignis!
Status: (Antwort) fertig Status 
Datum: 12:04 Mo 26.09.2005
Autor: informix

Hallo Igel,
[willkommenmr]

> Hallo,
>  
> ich finde irgendwie nicht den richtigen Ansatz zur
> Berechnung.
>  
> Es gibt zwei Arten von Zwillingen: eineiige und zweieiige.  
> .... folgende Zwillingsgeburten gezählt:
>  
> 21810 mal 2 Knaben
>  18006 mal 1 Knabe und ein Mädchen
>  21476 mal 2 Mädchen
>  
> a) Wahrscheinlichkeit Knabengeburten - erledigt  -
> (KKee+KKzw+KMzw)
>  b) Wahrscheinlichkeit KK, KM, MM - erledigt
>  C) x sei die Wahrscheinlichkeit dafür, daß eine
> Zwillingsgeburt eineiig ist. Berechnen Sie die

> Wahrscheinlichkeit einer eineiigen Zwillingsgeburt.
>  
> In den Angaben für 2 Knaben und 2 Mädchen stecken ja auch
> die Wahrscheinlichkeit für die eineiige und zweieiige
> Geburt. Wie bekomme ich die getrennt?  :-(  Ich habe es
> über verschiedene Rechenwege probiert - u.a.a. über LGS -
> aber sinnlose Ergebnisse.
>
> Wie kann ich diese Aufgabe lösen? In welche Richtung muß
> ich denken?

Bei dieser Art von Aufgaben geht man meistens davon aus, dass KK und MM die eineiigen und KM die zweieiigen Geburten sind.
Denn im Aufgabentext wird dieses Problem ja gar nicht weiter thematisiert!
Wenn du dies in die Einleitung deiner Lösung schreibst, kannst du ruhig damit weiterrechnen.
Oftmals sind umgangssprachliche Aufgaben ("aus der Praxis") nicht so richtig scharf formuliert und man kann sich "seinen Reim" darauf machen. Und das sollte man auch deutlich sagen!
definiere also: P(eineiig) = P(KK)+P(MM)
oder als Gegenereignis: P(eineiig) = P(nicht zweieiig) = 1 - P(zweieiig)
fertig! ;-)


Bezug
        
Bezug
Zwillingsgeburten - Wahrsch.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:46 Mo 26.09.2005
Autor: igel64

Ich habe mir folgendes überlegt.

Da ja die Kombination KK bzw. MM jeweils die gleiche Wahrscheinlichkeit hat, habe ich die sie jeweils durch 2 geteilt und dem entsprechenden Zweig im Baum geschrieben. Dann habe ich die Hauptzweige zusammen addiert und damit ergab sich:

p(KK)=21810/61292=0,3558 => /2 => je 0,1779 (ee/zw)
p(MM)=21476/61292=0,3504 => /2 => je 0,1752 (ee/zw)
p(KM)=18006/61292=0,2938

p(ee)=0,1779+0,1752=0,3531
p(zw)=0,1779+0,1752+0,2938=0,6448

Ist das so richtig?


Bezug
                
Bezug
Zwillingsgeburten - Wahrsch.: Bemerkung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:59 Mo 26.09.2005
Autor: statler

Hallo,

dieser ganze Kram ist schon deswegen etwas unglücklich, weil man aus dieser Stichprobe höchstens relative Häufigkeiten und keine Wahrscheinlichkeiten berechnen kann. Letztere kann man höchstens schätzen!

Gruß
Dieter

Bezug
                
Bezug
Zwillingsgeburten - Wahrsch.: Antwort
Status: (Antwort) fertig Status 
Datum: 15:37 Mo 26.09.2005
Autor: Julius

Hallo!

Biologisch macht deine Rechnung keinen Sinn, denn du gehst ja davon aus, dass es bei zwei Jungen gleichwahrscheinlich ist, dass sie eineiige oder zweieiige Zwillinge sind.

Wesentlich sinnvoller (und der einzig vernünftige Ansatz) ist das Vorgehen von Dieter:

Ziehe bei den beiden Jungen und den beiden Mächen jeweils die Hälfte der "Mädchen/Jungen"-Geburten ab. Der Rest sind dann jeweils die eineiigen Zwillingsgeburten.

Ich als Schüler würde mich aber weigern eine so unpräzise Aufgabe zu bearbeiten.

Liebe Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de