www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Zylinder
Zylinder < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zylinder: minimale Oberfläche
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 23:40 Mi 04.01.2006
Autor: hooover

Aufgabe
Ein Zylinder (Getränkedose) soll bei minimaler Oberfläche ein Volumen  von V=0,825 L haben.

Berechnen sie Höhe und Durchmesser.

Hallo Leute.

also die Formel für Gerade Kreiszylinder ist mir bekannt.

V Zylinder = [mm] r^2 \pi*h [/mm]

so das Problem stellen halt halt die zwei unbekannten dar.

oder hat jemand eien anderen Ansatz für mich?

vielen Dank schon mal

        
Bezug
Zylinder: Antwort
Status: (Antwort) fertig Status 
Datum: 00:00 Do 05.01.2006
Autor: DaMenge

Hi,

du sollst doch die Oberfläche minimieren, wie lautet denn noch die formel für die (Gesamt-)Oberfläche ?

wenn du dann aus deiner Formel für das Volumen nach einer Variablen auflöst und in die Formel für die Oberfläche einsetzt, dann sollte nur noch eine Variable übrig bleiben.
(genauer : es ergibt sich eine Funktion in einer Variablen, die es dann zu minimieren gilt, also ableiten und Ableitung gleich Null setzen usw...)

schreibst du mal auf, wie weit du dabei kommst?

viele Grüße
DaMenge

Bezug
                
Bezug
Zylinder: Minimale Oberfläche
Status: (Frage) beantwortet Status 
Datum: 16:52 Do 05.01.2006
Autor: hooover

Hallo,

ich habe jetzt die Formel für das Volumen umgestellt und in die für die
Oberfläche eingesetzt:


Oberfläche [mm] Z_{o} [/mm] (r) = [mm] \bruch{2(\pi*r^3+0,825l)}{r} [/mm]

[mm] Z_{o}' [/mm] (r) = [mm] \bruch{(2\pi*r^3+1,65)-6\pi*r^3}{r^2} [/mm]

Wie lautet denn dann die Ableitung? Meine Ableitung stimmt
nicht mit dem Vorschlag von einer anderen Seite überein, die da lautet:

Oberfläche (r+d) - Oberfläche (r-d) = 0

und


[mm] \bruch{4d*(0,825l + 2* \pi*r(d+r)(d-r)}{(d+r)(d-r)}=0 [/mm]

Woher kommt denn jetzt d?



Bezug
                        
Bezug
Zylinder: Antwort
Status: (Antwort) fertig Status 
Datum: 00:31 Fr 06.01.2006
Autor: Phecda

hi die ableitung ist ganz leicht zu bilden, wenn du $ [mm] \bruch{2(\pi\cdot{}r^3+0,825l)}{r} [/mm] $ als [mm] 2\pi*r^2+1,65/r [/mm] schreibst.. die ableitung wäre dann [mm] 4*\pi*r-1,65/r^2.. [/mm] hier von kannst du anschließend die nullstellen berechnen ..den ersten summand wieder mit [mm] 1/r^2 [/mm] erweitern--> [mm] (4\pi*r^3-1,65)/r^2=0 [/mm] ... r wäre gerundet 0,51! Wenn du r hast kannst du ja ganz easy den durchmesser und die höhe ausrechnen
die Ableitung kannst du natürlich auch mit der Quotientenregel machen, nur musst du aufpassen, dass diese regel nicht kommutativ ist.. d.h. im zähler der ableitung steht die ableitung des zählers mal nenner MINUS die ableitung des Nenners mal der zähler. du hast die ableitung genau umgekehrt berechnet .. passiert halt manchmal *g*
zu dem vorschlag von der anderen seite.. die haben praktisch dort eine d-umgebung um die Nullstelle gebildet und lassen das d als ein differtial gegen null streben. das ist das gleiche wie bei der h-methode der ableitung das h gegen null läuft und den abstand von zwei funktionsstellen darstellt
mfg Phecda

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de