www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis" - Zylinder mit Kugel
Zylinder mit Kugel < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zylinder mit Kugel: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:18 Mo 05.06.2006
Autor: Trivalik

Aufgabe
In eine Kugel mit Radius 2r soll ein oben und unten geschlossener Kreiszylinder mit möglichst
großer Oberfläche einbeschrieben werden. Bestimmen Sie Zylinderradius und Zylinderhöhe.

Diese Aufgabe sollte mit lagrangsche Regel gelöst werden. Jedoch weis ich nicht so recht wie ich diese hier anwenden soll oder genauer die Formeln dazu aufstellen. Da ich mir schon unsicher bin wie die Formel einer Kugel ist.
[mm] \bruch{x^2}{a^2}+ \bruch{y^2}{a^2}+ \bruch{z^2}{b^2}=1[/mm]

Wäre das soweit richtig?
Zylinder wäre a*b*c nur ist dies hier umzuformen, but how?

        
Bezug
Zylinder mit Kugel: Kugel
Status: (Antwort) fertig Status 
Datum: 12:13 Mo 05.06.2006
Autor: leduart

Hallo Trivalik
Was soll denn a,b in der Kugel sein?
Kugel: [mm] $x^2+y^2+z^2=r^2$ [/mm] Oberfläche des Zylinders mit radius r und Hohe h: [mm] $O=2*\pi*r^2+2*\pi*r*h, [/mm] Was dein a*b*c soll versteh ich nicht.
r,h des Zylunders werden durcch Radius der Kugel beschränkt, mach dir am besten ne Querschnittszeichnung.
Gruss leduart

Bezug
                
Bezug
Zylinder mit Kugel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:09 Mo 05.06.2006
Autor: Trivalik

Auf die Formel für die Kugel bin ich gekommen wegen des Elipsoids
http://de.wikipedia.org/wiki/Ellipsoid
jedoch müsste das b auch ein a sein.
Mit dem Zylinder hast du aber recht da hab ich daneben gegriffen!

Im Seminar hatte ich ein Bsp. das in eine Elipse ein Rechteck einbeschreibt mit maximaler Fläche jedoch versteh ich da die Skizze nicht.

Dort war [mm]\bruch{x^2}{a^2}+\bruch{y^2}{b^2}=1[/mm] die Ellipse.
und f(x,y)=4xy --> MAX.  
Wie kommt man auf die 4xy?? Da das ja ein rechteck um die Ellipse wäre und nicht drin, aber die Skizze hier zeigt eindeutig das das Rechteck in der Ellipse ist.

und daraus kommt man dann auf
[mm] F(x,y,L)=4xy+L(\bruch{x^2}{a^2}+\bruch{y^2}{b^2}-1) [/mm]

L ist dabei die konstante!!

Wie kommt man auf 4xy??????

Damit wär mir fast geholfen!!!

Bezug
                        
Bezug
Zylinder mit Kugel: Antwort
Status: (Antwort) fertig Status 
Datum: 19:38 Mo 05.06.2006
Autor: leduart

Hallo Trivalik
Das Rechteck hatte seine Ecken bei (x,y), (-x,y) (-x,-y) (x,-y) also die Seitenlängen 2x und 2y also Flächeninhalt 2x*2y.   x,y Punkt auf der Ellipse.
Ich versteh nicht warum das nicht innen liegen soll, die Ellipse ist doch1. konvex, und 2. symmetrisch zur x und y Achse.
Gruss leduart

Bezug
        
Bezug
Zylinder mit Kugel: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 Do 08.06.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de