www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Zylindervolumen
Zylindervolumen < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zylindervolumen: Aufgabe/Tipp
Status: (Frage) beantwortet Status 
Datum: 15:52 Fr 30.05.2008
Autor: mathematik_graz

Aufgabe
Zwei Geraden in der xy–Ebene schneiden einander unter 45°. Berechne das Volumen des Durchschnitts der beiden Zylinder vom Radius a, die diese Geraden als Symmetrieachsen haben.

also ich habe mir jetzt mal überlegt wie die zylinder liegen sollten.

also beide haben ihre Höhe auf der geraden. und das geuschte volumen ist dann genau das wo sich überschneiden.

ich hab jetzt noch keinen ansatz in integralform gefunden wie ich dasproblem angehen könnte!

ein tipp wäre super!!!

lg

        
Bezug
Zylindervolumen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:10 Fr 30.05.2008
Autor: abakus


> Zwei Geraden in der xy–Ebene schneiden einander unter 45°.
> Berechne das Volumen des Durchschnitts der beiden Zylinder
> vom Radius a, die diese Geraden als Symmetrieachsen haben.
>  also ich habe mir jetzt mal überlegt wie die zylinder
> liegen sollten.
>  
> also beide haben ihre Höhe auf der geraden. und das
> geuschte volumen ist dann genau das wo sich überschneiden.
>  
> ich hab jetzt noch keinen ansatz in integralform gefunden
> wie ich dasproblem angehen könnte!
>  
> ein tipp wäre super!!!

Hallo,
eine eklige Aufgabe. Da aber seit mehr als 3 Stunden niemand reagiert will ich wenigstens einen bescheidenen Beitrag leisten. Aufgrund der Symmetrie halte ich es für günstig, beide Zylinder jeweils 22,5° gegen die Symmetrieachse zu neigen.
[Dateianhang nicht öffentlich]
Jede Ebene, die senkrecht auf dieser Symmetrieachse steht, schneidet beide Zylinder in einer elliptischen Fläche. Diese beiden Ellipsen überschneiden sich teilweise (rote Fläche in der Abbildung)..
Die große Halbachse dieser Ellipse dürfte man erhalten, wenn man den Zylinderradius durch cos(22,5°) teilt. In jeder dieser Schnittebenen haben die Ellipsenmittelpunkte andere Abstände. Die Größe der Schnittfläche benötigst du für jede Schnittebene.
Ich hoffe es hilft (und bin froh, es nicht selbst ausrechnen zu müssen).
Viele Grüße
Abakus




>  
> lg


Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Bezug
                
Bezug
Zylindervolumen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:16 Sa 31.05.2008
Autor: mathematik_graz

Danke für die super Skizze.

ich werde dann mal schauen ob ich damit weiter komme!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de