www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - (a+b)³ = a³+b³ mod 3
(a+b)³ = a³+b³ mod 3 < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

(a+b)³ = a³+b³ mod 3: Tipp + Korrektur
Status: (Frage) beantwortet Status 
Datum: 18:38 Do 10.05.2007
Autor: celeste16

Aufgabe
Man zeige:
a) [mm] (a+b)^{3}=a^{3}+b^{3} [/mm] mod 3
b) [mm] (a+b)^{p}=a^{p}+b^{p} [/mm] mod p für alle Primzahlen p
Hinweis: Man benutze den kleinen Satz von Fermat.
c) Gilt [mm] (a+b)^{n}=a^{n}+b^{n} [/mm] mod n, für alle positiven Zahlen a,b,n?

ich hab mich bisher nur kurz mit a) beschäftigt und hätte eine leider sehr triviale idee:

mod 3 [mm] \Rightarrow [/mm] a,b [mm] \in [/mm] {0,1,2}
dann hätte ich eine multiplakitve gruppentafel gemacht
[mm] \vmat{ . & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 2 \\ 2 & 0 & 2 & 1} [/mm]
und gesehen dass a² und b² [mm] \in [/mm] {0,1} sind.

wenn ich jetzt ausmultipliziere erhalte ich:
[mm] (a+b)^{3}= a^{3} [/mm] + [mm] b^{3} [/mm] + 2a²b + 2 ab² + a²b + ab²

unter der Voraussetzung dass [mm] a\not=b [/mm] ist, bedeutet dass das alle therme bis auf [mm] a^{3} [/mm] + [mm] b^{3} [/mm] wegfallen.


ist wie gesagt nur ne fixe idee von mir und ich hab auch keine ahnung ob das überhaupt geht.
sagt bitte mal was dazu (wenn ihr anmerkungen zu den anderen aufgaben habt: immer her damit, hab mich aber wie gesagt noch nicht damit beschäftigt)




        
Bezug
(a+b)³ = a³+b³ mod 3: Antwort
Status: (Antwort) fertig Status 
Datum: 18:45 Do 10.05.2007
Autor: felixf

Hallo!

> Man zeige:
>  a) [mm](a+b)^{3}=a^{3}+b^{3}[/mm] mod 3
>  b) [mm](a+b)^{p}=a^{p}+b^{p}[/mm] mod p für alle Primzahlen p
>  Hinweis: Man benutze den kleinen Satz von Fermat.
>  c) Gilt [mm](a+b)^{n}=a^{n}+b^{n}[/mm] mod n, für alle positiven
> Zahlen a,b,n?
>  
> ich hab mich bisher nur kurz mit a) beschäftigt und hätte
> eine leider sehr triviale idee:
>  
> mod 3 [mm]\Rightarrow[/mm] a,b [mm]\in[/mm] {0,1,2}
>  dann hätte ich eine multiplakitve gruppentafel gemacht
> [mm]\vmat{ . & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 2 \\ 2 & 0 & 2 & 1}[/mm]
>  
> und gesehen dass a² und b² [mm]\in[/mm] {0,1} sind.
>  
> wenn ich jetzt ausmultipliziere erhalte ich:
>  [mm](a+b)^{3}= a^{3}[/mm] + [mm]b^{3}[/mm] + 2a²b + 2 ab² + a²b + ab²
>  
> unter der Voraussetzung dass [mm]a\not=b[/mm] ist, bedeutet dass das
> alle therme bis auf [mm]a^{3}[/mm] + [mm]b^{3}[/mm] wegfallen.

Die Voraussetzung $a [mm] \neq [/mm] b$ brauchst du gar nicht.

Deine Idee ist sehr gut (und auch der Standard-Ansatz), dazu benoetigt man allerdings den Hinweis gar nicht.

Was du machst, ist $(a + [mm] b)^p [/mm] = [mm] \sum_{i=0}^p \binom{p}{i} a^i b^{p-i}$ [/mm] zu schreiben; du musst zeigen, dass [mm] $\binom{p}{i}$ [/mm] fuer $0 < i < p$ durch $p$ teilbar ist, also kongruent zu $0$ modulo $p$ ist. Damit folgt dann $(a + [mm] b)^p \equiv a^p [/mm] + [mm] b^p \pmod{p}$. [/mm]

Das ist so richtig und gilt auch noch viel allgemeiner (in allen kommutativen Ringen der Charakteristik $p$, wenn dir das was sagt).

Der von den Aufgabenstellern gewuenschte Ansatz ist wohl eher, dass du [mm] $x^p \equiv [/mm] x [mm] \pmod{p}$ [/mm] fuer alle $x [mm] \in \IZ$ [/mm] zeigst. Daraus folgt dann natuerlich sofort $(x + [mm] y)^p \equiv [/mm] x + y [mm] \equiv x^p [/mm] + [mm] y^p \pmod{p}$. [/mm] Und um das zu zeigen, dafuer brauchst du den kleinen Satz von Fermat.

Dieser Beweisansatz funktioniert nur, wenn man modulo $p$ rechnet (bzw. in [mm] $\IZ/p\IZ$, [/mm] also dem endlichen Koerper mit $p$ Elementen -- falls dir das was sagt).

Die Aussage zu (c) stimmt im allgemeinen nicht; du kannst ja mal ein konkretes Gegenbeispiel suchen. (Dazu sollte $n$ keine Primzahl sein, sonst wuerde es nach (b) ja funktionieren...)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de