www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - a QNR und PW mod p
a QNR und PW mod p < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

a QNR und PW mod p: Mit Tip
Status: (Frage) beantwortet Status 
Datum: 16:56 Mi 30.06.2010
Autor: buef

Aufgabe
Zeigen Sie für p [mm] \in \IP [/mm] \ {2}: Ist jeder QNR auch eine PW mod p, so hat p die Form [mm] p=2^m [/mm] +1

(TIP: Wieviel QNR und wieviel PW gibt es? Bestimmen Sie dann die Lösungen p [mm] \in \IP [/mm] der Gleichung [mm] \varphi(\varphi(p))=\bruch{p-1}{2}, [/mm] indem Sie p-1 in Primfaktoren zerlegen.)

Also mod p hat [mm] \bruch{p-1}{2} [/mm] QNR und mod p hat [mm] \varphi(\varphi(p)) [/mm] viele PW

[mm] \varphi(\varphi(p))=\varphi(p-1)=\varphi(2^m)=\2^m [/mm] - [mm] 2^{m-1}=p-1-(p-1)/2=\bruch{p-1}{2} [/mm]

Da die Anzahl der PW und der QNR sind gleich. Somit gibt es keine andere Form, da es keine anderen p einer anderen Form mehr geben  kann. Kann man so argumentieren? Mir ist das ziemlich schwammig!

        
Bezug
a QNR und PW mod p: Antwort
Status: (Antwort) fertig Status 
Datum: 18:30 Mi 30.06.2010
Autor: felixf

Moin!

> Zeigen Sie für p [mm]\in \IP[/mm] \ {2}: Ist jeder QNR auch eine PW
> mod p, so hat p die Form [mm]p=2^m[/mm] +1

Also QNR = quadratischer Nicht-Rest und PW = Primitivwurzel?

> (TIP: Wieviel QNR und wieviel PW gibt es? Bestimmen Sie
> dann die Lösungen p [mm]\in \IP[/mm] der Gleichung
> [mm]\varphi(\varphi(p))=\bruch{p-1}{2},[/mm] indem Sie p-1 in
> Primfaktoren zerlegen.)
>
>  Also mod p hat [mm]\bruch{p-1}{2}[/mm] QNR und mod p hat
> [mm]\varphi(\varphi(p))[/mm] viele PW

Ja. Und, was ganz wichtig ist: jede PW ist ein QNR.

> [mm]\varphi(\varphi(p))=\varphi(p-1)=\varphi(2^m)=\2^m[/mm] -
> [mm]2^{m-1}=p-1-(p-1)/2=\bruch{p-1}{2}[/mm]

Jetzt hast du gezeigt: ist $p$ von der Form [mm] $2^m [/mm] + 1$, so ist jeder QNR eine PW.

> Da die Anzahl der PW und der QNR sind gleich.

Was meinst du damit? "Somit sind die Anzahl der PW und QNR gleich, wenn $p = [mm] 2^m [/mm] + 1$ ist"?

> Somit gibt es keine andere Form, da es keine anderen p einer anderen Form
> mehr geben  kann.

Warum sollte das gelten? Warum folgt das aus dem vorherigen?

> Kann man so argumentieren? Mir ist das
> ziemlich schwammig!

Nein, so kannst du nicht argumentieren. Du zeigst die fasche Richtung. Wenn du zeigen willst, dass eine differenzierbare Funktion $f$ mit $f'(x) = 0$ fuer alle $x$ konstant ist, dann faengst du nicht mit einer konstanten Funktion an, leitest diese ab, stellst fest dass die Ableitung ueberall 0 ist, und behauptest dass daraus folgt dass jede Funktion deren Ableitung ueberall 0 ist bereits konstant ist.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de