www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Rationale Funktionen" - a, b und c bestimmen
a, b und c bestimmen < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

a, b und c bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:02 Di 24.01.2012
Autor: Apfelchips

Aufgabe
[mm]f(x) = \bruch{x + a}{x^2 + bx + c}[/mm]


x = 2 ist eine Polstelle
x = -4 ist eine behebbare Lücke

1) Bestimmen Sie a, b und c!
2) Wie lautet die Asymptote?


Ich widme mich erstmal nur 1), indem ich die Variable "x" im Zählerpolynom und Nennerpolynom durch die Linearfaktordarstellungen der angegebenenen Eigenschaften (Polstelle, behebbare Lücke) ersetze:

[mm]f(x) = \bruch{(x + 4) + a}{(x - 2)^2 + b(x + 4) + c}[/mm]

Ist das bis hierhin richtig?



        
Bezug
a, b und c bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:29 Di 24.01.2012
Autor: abakus


> [mm]f(x) = \bruch{x + a}{x^2 + bx + c}[/mm]
>  
>
> x = 2 ist eine Polstelle
>  x = -4 ist eine behebbare Lücke

Also wird für x=2 der Nenner Null, der Zähler aber nicht.
Für x=-4 werden Zähler UND Nenner Null.
Der Zähler enthält also den Faktor (x+4), der Nenner die Faktoren (x+4) und (x-2).
Die Betonung liegt dabei auf "Faktor". Du verwendest die Dinger als Summanden ("x+4+a" ist Unfug).
Gruß Abakus

>  
> 1) Bestimmen Sie a, b und c!
>  2) Wie lautet die Asymptote?
>  
> Ich widme mich erstmal nur 1), indem ich die Variable "x"
> im Zählerpolynom und Nennerpolynom durch die
> Linearfaktordarstellungen der angegebenenen Eigenschaften
> (Polstelle, behebbare Lücke) ersetze:
>  
> [mm]f(x) = \bruch{(x + 4) + a}{(x - 2)^2 + b(x + 4) + c}[/mm]
>  
> Ist das bis hierhin richtig?
>  
>  


Bezug
                
Bezug
a, b und c bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:00 Di 24.01.2012
Autor: Apfelchips


Danke für Deine Hilfe!


>  Also wird für x=2 der Nenner Null, der Zähler aber
> nicht.
>  Für x=-4 werden Zähler UND Nenner Null.
>  Der Zähler enthält also den Faktor (x+4), der Nenner die
> Faktoren (x+4) und (x-2).
>  Die Betonung liegt dabei auf "Faktor". Du verwendest die
> Dinger als Summanden ("x+4+a" ist Unfug).

Im Zähler steht also nur (x+4), ja?
Das müsste sich dann ja exakt so auch im Nenner wiederfinden. Woher weiß ich nun, wo ich den Faktor (x-2) hinpacke?

Folgendes würde dazu führen, dass bei x = -4 Zähler und Nenner null werden und bei x = 2 der Zähler ungleich null und der Nenner gleich null wird. Allerdings würde das nicht mehr der Funktionsform aus der Aufgabenstellung entsprechen.

[mm]f(x) = \bruch{(x+4)}{(x-2)^2(x+4)}[/mm]

Ich komme an dieser Stelle leider nicht wirklich voran …

Bezug
                        
Bezug
a, b und c bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:11 Di 24.01.2012
Autor: Walde

Hi Apfelchips,

laß einfach mal das Quadrat bei der einen Klammer im Nenner weg. Dann ist es doch immer noch eine Nullstelle...

LG walde

Bezug
                                
Bezug
a, b und c bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:55 Di 24.01.2012
Autor: Apfelchips

Danke für Deine Antwort, Walde!

Da war ich wohl auf dem Holzweg.

Neuer Versuch:

[mm]f(x) = \bruch{(x+4)}{(x-2)(x+4)}[/mm]

[mm]f(x) = \bruch{(x+4)}{x^2+2x-8}[/mm]

Heißt also:

a = 4
b = 2
c = -8

Ist das korrekt?

Die Asymptote wäre dann a(x) = 0 da Z < N

Bezug
                                        
Bezug
a, b und c bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:18 Di 24.01.2012
Autor: Walde

Ja.

LG walde

Bezug
                                                
Bezug
a, b und c bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:28 Di 24.01.2012
Autor: Apfelchips

Alles klar. Hab(t) vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de