www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - abbildung injektiv, surjektiv
abbildung injektiv, surjektiv < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

abbildung injektiv, surjektiv: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:30 Mi 09.08.2006
Autor: hooover

Aufgabe
Ist die Funktion/Abbildung injektiv (surjektiv, bijektiv?)

p(x) mit der Vorschrift p(x) = [mm] a_{0}+a_{1}x+...+a_{n}x^n [/mm] mit [mm] a_{n} \not=0 [/mm] wird als Polynom vom Grad n bezeichtnet. Die Menge der Polynome vom Grad  [mm] \le [/mm]
n mit reellen Koeffizienten [mm] a_{i} [/mm] bezeichnet man mit  [mm] \IR \le [/mm]
n [x], also

[mm] \IR \le [/mm] n [x] = {p(x) = [mm] a_{0}+a_{1}x+...+a_{n}x^n [/mm] | [mm] a_{0}, a_{1},..., a_{n} \in \IR [/mm] n}

Die Abbildung L sei definiert durch

L: [mm] \IR \le2[x] \to \IR \le1[x], a_{2}x^2+a_{1}x+ a_{0} \mapsto a_{1}x+ a_{0}. [/mm]

Hallo Leute,

also das ganze sieht ja auf den ersten Blick ziemlich verwirrent aus.

Ich habe mir das mal ganz einfach gemacht und das sieht so aus(link).
[Dateianhang nicht öffentlich]

Ich befürchte aber das da was fehlt oder das alles womöglich ganz falsch sein könnte.

Achja meine aufgrund der Abildung würde ich drauf schließen das sie surjektiv ist.



Ich danke jetzt schonaml für eure kreativen Einfälle

gruß hooover

edit(mathemaduenn):Bild eingefügt

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
abbildung injektiv, surjektiv: Antwort
Status: (Antwort) fertig Status 
Datum: 23:02 Mi 09.08.2006
Autor: Kuebi

Hallo du!

Gesucht ist die Untersuchung der Abbildung auf Injektivität und Surjektivität.


Betrachten wir kurz die Gegebenheiten: Wir haben eine Menge die auf eine andere abgebildet wird. Unsere Urmenge hat die drei Elemente

[mm] p(x)=a_{2}*x^{2}+a_{1}*x+a_{0} [/mm]
[mm] p(x)=a_{1}*x+a_{0} [/mm]
[mm] p(x)=a_{0} [/mm]

Unsere Bildmenge hat die zwei Elemente

[mm] p(x)=a_{1}*x+a_{0} [/mm]
[mm] p(x)=a_{0} [/mm]

1.Frage: Ist die Abbildung surjektiv? D.h., wird jedes Element der Bildmenge mindestens einmal als Funktionswert angenommen?
Diese Frage ist mit ja zu beantworten, wie du bereits richtig geschrieben hast. Denn jedem beliebigen Polynom in der Zielmenge kann ein Polynom in der Urmenge zugeordnet werden.

2.Frage: Ist die Abbildung injektiv? D.h., folgt aus gleichem Funktionswert bereits die Gleichheit der Argumente?
Diese Frage ist mit nein zu beantworten. Als Begründung sehen wir uns ein Gegenbeispiel an:

Wir schauen uns zwei Polynome der Urmenge an:

[mm] p_{1}(x)=3*x^{2}+3*x+4 [/mm] und
[mm] p_{2}(x)=8*x^{2}+3*x+4 [/mm]

Beide Polynome werden von der Abbildung auf das selbe Polynom überführt. D.h.

[mm] L(p_{1})=3*x^{2}+4=L(p_{2}). [/mm]

Anders ausgedrückt: Aus [mm] L(p_{1})=L(p_{2}) [/mm] folgt nicht schon, dass [mm] p_{1}=p_{1}. [/mm] Folglich ist die Abbildung nicht injektiv.

Alles klar soweit?

Vlg, Kübi
:-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de