www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Abbildungen und Matrizen" - abbildungsmatrix
abbildungsmatrix < Abbildungen+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

abbildungsmatrix: ideen
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:03 Mo 14.01.2008
Autor: Alica

Aufgabe
Gegeben sind die Punkte A(-2/-5/-5) B(1/-2/-5) C(1/7/-2)
a) Gib eine Parameterdarstellung und eine Normalengleichung der durch A,B und C festgelegten Ebene E an.
b) Zeige, dass das Dreieck ABC gleichseitig ist. Bestimme den Schwerpunkt S des Dreiecks ABC.
c) Bestimme alle Punkte D so, dass A,B,C,D die eckpunkte eines regelmäßigen Tetraeders bilden.
d) Zeige, dass die durch die Matrix T vermittelte Abbildung jeden Punkt der Geraden g auf sich abbildet. Wie bildet die zu T gehörige Abbildung das Dreieck ABC ab?

[mm] T=\bruch{1}{9} [/mm] * [mm] \pmat{ 8 & -4 & -1\\ -1 & -4 & 8\\ -4 & -7 & -4}, [/mm]
g: [mm] \vec{x}= \lambda [/mm] * [mm] \vektor{-5 \\ 1 \\1 } [/mm]

Hallöchen,
ich brauch eigentlich nur Hilfe bei teilaufgabe c) und d), bei diesen beiden Aufgaben hab ich nichtmals einen ansatz und überlege schon lange aber mir fällt nichts ein, wäre froh wenn ihr mir sagen könntet was ich da machen muss danke schonmal im vorraus

Meine Lösungen von a) und b)

a) Parameterdarstellung : [mm] \vec{x}= \vektor{-2 \\ -5 \\ -5} [/mm] + [mm] \lambda [/mm] * [mm] \vektor{3 \\ 3 \\ 12} [/mm] + [mm] \mu [/mm] * [mm] \vektor{3 \\ 12 \\ 3} [/mm]

Normalengleichung : [mm] \vektor{-5 \\ 1 \\ 1} \* \vec{x} [/mm] = 0

b) [mm] \vmat{ \vec{a} }= \wurzel{54} \vmat{ \vec{b} }= \wurzel{54} [/mm] und [mm] \vmat{ \vec{c} }= \wurzel{54} [/mm]

   Schwerpunkt S= (-2/2/0)

        
Bezug
abbildungsmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 18:46 Mo 14.01.2008
Autor: Joerg_G.

Hallo Alica,

hier mal ein paar Sachen die dir hoffentlich weiterhelfen:

Zur a)
Bei deiner Parameterdarstellung stimmt der erste Richtungsvektor nicht,

[mm] \vektor{1 \\ -2 \\ -5} [/mm] - [mm] \vektor{-2 \\ -5 \\ -5} [/mm] = [mm] \vektor{3 \\ 3 \\ 0} [/mm]

Dementsprechend bekomme ich auch einen anderen Normalenvektor als Ergebnis der Kreuzmultiplikation zwischen

[mm] \vektor{3 \\ 3 \\ 0} \times \vektor{3 \\ 12 \\ 3} [/mm]

als du. Wie hast du denn den Normalenvektor bestimmt?



Zur c)

Mit dem Schwerpunkt (Aufpunkt) und dem Normalenvektor (Richtungsvektor) kannst du diejenige Gerade finden auf der die beiden gesuchten D (einer über, einer unter der Ebene) liegen. Eine weitere Bedingung ist der gleichbleibende Abstand [mm] \wurzel{54} [/mm] von den Punkten A,B,C. Damit sollte es dir jetzt möglich sein die Punkte D zu finden.


Zur d)
Habt ihr denn bereits Matrix-Vektor-Multiplikation gehabt? Dann kannst du Matrix und Vektor multiplizieren und wirst feststellen dass das Ergebnis wieder [mm] \lamda \vektor{-5 \\ 1 \\ 1} [/mm] ist. Die Matrix (Abbildung) bildet die Gerade auf sich selbst ab.
Für das Dreieck kannst du mMn. das gleiche Spielchen mit dem Normalenvektor der Ebene machen und musst das Ergebnis dann dementsprechend geometrisch interpretieren (allerdings bin ich mir nicht sicher ob das hier gemeint ist).


Ich hoffe ich konnte dir ein bisschen weiterhelfen.

Viele Grüße,
Jörg

Bezug
                
Bezug
abbildungsmatrix: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 19:33 Mo 14.01.2008
Autor: Alica

Wie funktioniert die Kreuzmultiplikation?

Bezug
                        
Bezug
abbildungsmatrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 03:37 Di 15.01.2008
Autor: Zneques

Hallo,

Wenn man Kreuzprodukt googelt, ergibt gleich der erste Treffer die Wikipediaseite.
Unter "Komponentenweise Berechnung" ist es dann erklärt.
Es steht aber auch sonst quasi überall.

Ciao.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de