www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - abbildungsmatrix bzgl basis
abbildungsmatrix bzgl basis < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

abbildungsmatrix bzgl basis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:55 Mo 15.02.2010
Autor: katjap

Aufgabe
Wir betrachten den R-Vektorraum V = R2 als euklidischen Vektorraum mit dem Standard-
Skalarprodukt.
(i) Zeigen Sie, dass die Abbildung f : V -> V, (a, b) ->
[mm] (\bruch{12}{13}a+\bruch{5}{13}b, \bruch{5}{13}a-\bruch{12}{13}b)linear [/mm] ist.
(ii) Geben Sie die Matrix von f bzgl. der Basis (1, 1), (1,−1) von V an.

Halllo!


Die Linearität als Vorraussetzung habe ich schon einmal gezeigt.
Nun stehe ich vor dem Problem die Abbildungsmatrix aufzustellen bzwgl. einer Basis, ich habe zwar das skript vor mir liegen, verstehe aber trotzdem nicht ganz was ich da tun muss.

meine annahme wäre

[mm] f(b_1) [/mm] ausrechnen= [mm] (\bruch{17}{13}, \bruch{-7}{13}) [/mm]
[mm] f(b_2)= (\bruch{17}{13}, \bruch{17}{13}) [/mm]


ist dann die abbildungsmatrix das hier:

[mm] \pmat{\bruch{17}{13}& \bruch{17}{13}\\ \bruch{-7}{13} & \bruch{17}{13}} [/mm]

vielen dank für tips:)



        
Bezug
abbildungsmatrix bzgl basis: Antwort
Status: (Antwort) fertig Status 
Datum: 15:11 Mo 15.02.2010
Autor: schachuzipus

Hallo Katja,

> Wir betrachten den R-Vektorraum V = R2 als euklidischen
> Vektorraum mit dem Standard-
>  Skalarprodukt.
>  (i) Zeigen Sie, dass die Abbildung f : V -> V, (a, b) ->

>  [mm](\bruch{12}{13}a+\bruch{5}{13}b, \bruch{5}{13}a-\bruch{12}{13}b)linear[/mm]
> ist.
>  (ii) Geben Sie die Matrix von f bzgl. der Basis (1, 1),
> (1,−1) von V an.
>  Halllo!
>  
>
> Die Linearität als Vorraussetzung habe ich schon einmal
> gezeigt.
>  Nun stehe ich vor dem Problem die Abbildungsmatrix
> aufzustellen bzwgl. einer Basis, ich habe zwar das skript
> vor mir liegen, verstehe aber trotzdem nicht ganz was ich
> da tun muss.
>  
> meine annahme wäre
>  
> [mm]f(b_1)[/mm] ausrechnen= [mm](\bruch{17}{13}, \bruch{-7}{13})[/mm] [ok]
>  
> [mm]f(b_2)= (\bruch{17}{13}, \bruch{17}{13})[/mm] [notok]

Da stimmt was in der ersten Komponente nicht!

>  
>
> ist dann die abbildungsmatrix das hier:
>  
> [mm]\pmat{\bruch{17}{13}& \bruch{17}{13}\\ \bruch{-7}{13} & \bruch{17}{13}}[/mm]

Wie kommst du darauf?

Du musst die errechneten Bilder der Basisvektoren als LK der Basisvektoren darstellen und die in dieser LK auftauchenden Koeffizienten als Spalten in die Darstellungsmatrix packen.

Dieses Prozedere angewandt auf den i-ten Basisvektor liefert die i-te Spalte der Darstellungsmatrix.

Mal für den [mm] \red{1}. [/mm] Basisvektor:

Du hast richtig berechnet: [mm] $f\left(\vektor{1\\1}\right)=\vektor{17/13\\-7/13}$ [/mm]

Diesen Bildvektor nun als LK der Basisvektoren darstellen:

[mm] $\vektor{17/13\\-7/13}=\alpha\cdot{}\vektor{1\\1}+\beta\cdot{}\vektor{1\\-1}$ [/mm]

Das kannst du nun selber ausrechnen, es liefert [mm] $\alpha=5/13, \beta=12/13$ [/mm]

Den Koeffizientenvektor [mm] $\vektor{\alpha\\\beta}$ [/mm] packe nun als [mm] \red{1}. [/mm] Spalte in die Darstellungsmatrix, also

[mm] $M=\pmat{5/13&\vdots{}\\12/13&\vdots{}}$ [/mm]

Das Bild des 2.Basisvektors berechne nochmal neu und dann nach Schema x die 2.Spalte der Darstellungsmatrix berechnen.

  

> vielen dank für tips:)
>  


LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de