www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - ableitung von produkten
ableitung von produkten < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ableitung von produkten: reine verständnisfrage
Status: (Frage) beantwortet Status 
Datum: 13:10 So 08.10.2006
Autor: sugaababe

Aufgabe
f(x) [mm] x\in \IR: [/mm] f(x) [mm] \not= [/mm] 0
f ist differenzierbar und f'(x) = x* f(x)

so, ich wollte jetz nur wissen ob man quasi grundlegend davon ausgehen kann dass f'(x) = x* f(x) ???


danke schon mal,

Sugaaa

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
ableitung von produkten: hinweis
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:12 So 08.10.2006
Autor: sugaababe

ich hab keine aufgaben-frage gestellt, ich wollte halt nur das mit dem f(x) wissen, den rest mach ich dann allein, also nich wundern ;)


Sugaaa

Bezug
        
Bezug
ableitung von produkten: Ableitung
Status: (Antwort) fertig Status 
Datum: 13:19 So 08.10.2006
Autor: clwoe

Hi,

die Ableitung einer Funktion ist nicht grundlegend x*f(x)=f'(x). Für die Ableitung von Funktionen gibt es je nach Fall ganz unterschiedliche Möglichkeiten und Vorgehensweisen.
Wenn in dieser Aufgabe steht dass f'(x)=x*f(x) ist, dann ist das nur bei dieser Aufgabe der Fall!
Also bitte nicht grundlegend davon ausgehen!!!

Gruß,
clwoe


Bezug
                
Bezug
ableitung von produkten: aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:42 So 08.10.2006
Autor: sugaababe

Aufgabe
siehe oben

aufgabe: stellen sie f''(x) und f'''(x) durch f(x) dar.

ich weiß es nich, hab hier aber die lösungen liegen

da heißt es

f''(x) = f(x) + x *f'(x)

x* f'(x) is klar, das bezieht sich ja auf bei der ersten frage gaaanz oben genanntes f'(x) = x* f(x)
aber dieses f(x), das is mir völlig schleierhaft...

Sugaaa

Bezug
                        
Bezug
ableitung von produkten: Produktregel
Status: (Antwort) fertig Status 
Datum: 15:03 So 08.10.2006
Autor: zetamy

Hallo,

Die Aufgabe ist eigentlich nicht schwer, es sieht nur so aus.

Laut Aufgabe ist [mm]f'(x)=x*f(x)[/mm]. Die 2. Ableitung von f(x) ist die Ableitung von f'(x), dh.

[mm]f''(x)=[f'(x)]'=[x*f(x)]'[/mm]

Darauf musst du jetzt die Produktregel anwenden:

[mm]f''(x)=1*f(x)+x*f'(x)=f(x)+x*f'(x)[/mm]

Für f'''(x) gilt das gleiche: [mm]f'''(x)=[f''(x)]'=[f(x)+x*f'(x)]'[/mm]... Den Rest solltest du alleine schaffen

Gruß, zetamy



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de