www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - abs. Konv. Filter
abs. Konv. Filter < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

abs. Konv. Filter: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 00:14 Sa 27.10.2012
Autor: Salamence

Aufgabe
Sei [mm] (x_{n})_{n} [/mm] Folge reeller Zahlen und für $ A [mm] \subset \IN [/mm] $ endlich sei $ [mm] f(A):=\sum_{n\in A}x_{n} [/mm] $. Definieren Sie einen Filter auf der Menge der endlichen Teilmengen der natürlichen Zahlen, sodass die Konvergenz von f bezüglich dieses Filters äquivalent ist zur absoluten Konvergenz der Reihe [mm] \sum_{n \in \IN} x_{n} [/mm]

Hallo!

Also erstmal: eine Abbildung kann nur konvergent sein bezüglich zwei Filtern. Was ist also der Filter auf [mm] \IR [/mm] ? Ich hab mir da gedacht, das könnte der Umgebungsfilter des Wertes der Reihe sein. Aber im Allgemeinen muss der ja garnicht existieren.
Und wie man nun auf den Filter auf der Menge der endlichen Teilmengen finden soll, weiß ich auch nicht. Eine Reihe ist ja genau dann absolut konvergent genau dann wenn jede Umordnung konvergent ist und den gleichen Wert annimmt. Also hab ich mir gedacht, dass man da vielleicht irgendwas mit dijunkten Zerlegungen von [mm] \IN [/mm] machen muss, wie man das aber in einen Filter übersetzt, sehe ich nicht.

        
Bezug
abs. Konv. Filter: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Di 30.10.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de