(absolute)Konv., Divergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 17:01 Mo 04.12.2006 | Autor: | aineias |
Aufgabe | Untersuchen Sie folgende Reihen auf Konvergenz, absolute Konvergenz und auf Divergenz:
a.) [mm] \summe_{n=1}^{\infty} [/mm] [mm] (-1)^{n} [/mm] [mm] \bruch{2n+5}{3n+1/n} [/mm]
b.) [mm] \summe_{n=0}^{\infty} [/mm] [mm] (-1)^{n} [/mm] [mm] \bruch{n^{3}}{3^{n}}[/mm]
c.) [mm] \summe_{n=1}^{\infty} [/mm] [mm] \bruch{1}{n*\wurzel[n]{n}} [/mm] |
HELP ME!!!!!
hallo zusammen... hoffe ihr könnt uns aus der patsche helfen!!
also die ersten beiden haben wir teilweise lösen können: bei a.) haben wir raus, dass die reihe divigiert und zwar mit 2/3 bzw -2/3.
bei b.) sind wir uns nicht ganz sicher und zwar haben wir folgendes mit dem quotientenkriterium: ...= [mm] \bruch{\wurzel{1}(n+1)^3}{3n^3} [/mm] , -----> < 0, also konvertiert es.
und bei c.) haben wir allerdings keine peilung!!! anscheinend wegen der wurzel!!! könnt ihr uns da einen tipp geben, wäre echt klasse!!!!
p.s sind die obigen überhaupt richitig gelöst????
danke schonmal im voraus!!
grüße
solero cru
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:03 Di 05.12.2006 | Autor: | Loddar |
Hallo aineias!
> also die ersten beiden haben wir teilweise lösen können:
> bei a.) haben wir raus, dass die reihe divigiert und zwar
> mit 2/3 bzw -2/3.
Etwas sauberer argumentieren: die aufzusummierende Folge hat die beiden Häufungspunkte [mm] $+\bruch{2}{3}$ [/mm] und [mm] $-\bruch{2}{3}$ [/mm] und ist damit keine Nullfolge [mm] $\Rightarrow$ [/mm] die Reihe divergiert.
> bei b.) sind wir uns nicht ganz sicher und zwar haben wir
> folgendes mit dem quotientenkriterium: ...=
> [mm]\bruch{\wurzel{1}(n+1)^3}{3n^3}[/mm] , -----> < 0, also
> konvertiert es.
Hier ist etwas schief gelaufen beim Quotientenkriterium:
[mm] $\left|\bruch{a_{n+1}}{a_n}\right| [/mm] \ = \ [mm] \left|\bruch{(-1)^{n+1}*\bruch{(n+1)^3}{3^{n+1}}}{(-1)^n*\bruch{n^3}{3^n}}\right| [/mm] \ = \ [mm] \left|(-1)*\bruch{(n+1)^3*3^n}{n^3*3^{n+1}}\right| [/mm] \ = \ [mm] |-1|*\left|\left(\bruch{n+1}{n}\right)^3*\bruch{1}{3}\right| [/mm] \ = \ ...$
Gruß
Loddar
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:21 Mi 06.12.2006 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|