www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - absoluter Maximalfehler
absoluter Maximalfehler < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

absoluter Maximalfehler: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:26 Mo 13.07.2009
Autor: tedd

Aufgabe
Zur Berechnung der Hypothenuse c eines rechtwinkligen Dreiecks wurden gemessen:
Kathete a = (3 ± 0,1) m
Kathete b = (4 ± 0,1) m
Berechnen Sie den absoluten Maximalfehler von c mit Hilfe des totalen Differenzials.

Also...

[mm] c=\sqrt{a^2+b^2} [/mm]

[mm] \bruch{\partial c}{\partial a}=\bruch{1}{2*\sqrt{a^2+b^2}}*2*a=\bruch{a}{\sqrt{a^2+b^2}} [/mm]

[mm] \bruch{\partial c}{\partial b}=\bruch{1}{2*\sqrt{a^2+b^2}}*2*b=\bruch{b}{\sqrt{a^2+b^2}} [/mm]

da=db=0,1 ....
Jetzt stellt sich mir die Frage ob ich beim totalen Differential Betragsstriche setzen muss oder nicht:

[mm] dc=\bruch{\partial c}{\partial a}(3,4)*da+\bruch{\partial c}{\partial b}(3,4)*db=\bruch{3}{\sqrt{3^2+4^2}}*0,1+\bruch{4}{\sqrt{3^2+4^2}}*0,1=0,06+0,08=0,14 [/mm]

In dem Beispiel wäre es egal ob ich Betragsstriche setze oder nicht, aber müsste ich das in einem anderen Fall machen? (wenn [mm] \bruch{\partial c}{\partial a}(3,4) [/mm] beispielsweise negativ wäre)
Ist das jetzt mein absoluter Maximalfehler?

Danke und Gruß,
tedd

        
Bezug
absoluter Maximalfehler: Antwort
Status: (Antwort) fertig Status 
Datum: 13:41 Mo 13.07.2009
Autor: Al-Chwarizmi


> Zur Berechnung der Hypothenuse c eines rechtwinkligen
> Dreiecks wurden gemessen:
>  Kathete a = (3 ± 0,1) m
>  Kathete b = (4 ± 0,1) m
>  Berechnen Sie den absoluten Maximalfehler von c mit Hilfe
> des totalen Differenzials.
>  Also...
>  
> [mm]c=\sqrt{a^2+b^2}[/mm]
>  
> [mm]\bruch{\partial c}{\partial a}=\bruch{1}{2*\sqrt{a^2+b^2}}*2*a=\bruch{a}{\sqrt{a^2+b^2}}[/mm]
>  
> [mm]\bruch{\partial c}{\partial b}=\bruch{1}{2*\sqrt{a^2+b^2}}*2*b=\bruch{b}{\sqrt{a^2+b^2}}[/mm]
>  
> da=db=0,1 ....
>  Jetzt stellt sich mir die Frage ob ich beim totalen
> Differential Betragsstriche setzen muss oder nicht:
>  
> [mm]dc=\bruch{\partial c}{\partial a}(3,4)*da+\bruch{\partial c}{\partial b}(3,4)*db=\bruch{3}{\sqrt{3^2+4^2}}*0,1+\bruch{4}{\sqrt{3^2+4^2}}*0,1=0,06+0,08=0,14[/mm]
>  
> In dem Beispiel wäre es egal ob ich Betragsstriche setze
> oder nicht, aber müsste ich das in einem anderen Fall
> machen? (wenn [mm]\bruch{\partial c}{\partial a}(3,4)[/mm]
> beispielsweise negativ wäre)

Ja, solltest du. Die Abweichungen der Katheten
könnten ja nach oben oder unten gehen und
sich im schlimmsten Fall "destruktiv für die
Genauigkeit des Schlussergebnisses der Rechnung"
überlagern.

>  Ist das jetzt mein absoluter Maximalfehler?

Eigentlich ist es eine Schätzung für die Größe
des maximalen Fehlers. Sind tatsächlich
beide Abweichungen bei den Katheten je +0.1,
so wird der absolute Fehler noch um ein mü größer !
  

> Danke und Gruß,
>  tedd


LG    Al-Chw.

Bezug
                
Bezug
absoluter Maximalfehler: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:54 Mo 13.07.2009
Autor: tedd

Alles klar!
Danke für die Hilfe.

Gruß,
tedd

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de