www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - abstand punkt ebene
abstand punkt ebene < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

abstand punkt ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:26 Mi 25.06.2008
Autor: Lara102

Aufgabe
Gegeben ist die Ebene E: [mm] 10x_{1}+2x_{2}-11x_{3} [/mm] und der in E liegende Punkt Q (3/-2/2)
b, bestimmen sie alle punkte P der geraden g, die von der Ebene den ABstand 3 haben.

hey :)
bräuchte hilfe bei dieser aufgabe.. ich weiß nicht wieso ich nicht weiterkomme.
die gerade g wurde in der teilaufgabe zuvor berechnet. sie lautet: x= [mm] \vektor{3 \\ -2 \\ 2} [/mm] +t* [mm] \vektor{10 \\ 2 \\ -11} [/mm]
ich habe es jetzt sowohl mit der hesse'schen normalenform als auch mit folgendem weg versucht:
6=( [mm] \vektor{x \\ y \\ z} [/mm] - [mm] \vektor{3 \\ -2 \\2}) [/mm] * [mm] \bruch{1}{15} [/mm] * [mm] \vektor{10 \\ 2 \\ -11} [/mm]
was mach ich denn falsch?
vielen dank für die hilfe
lara =)

        
Bezug
abstand punkt ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 15:46 Mi 25.06.2008
Autor: leduart

Hallo
Die Gerade schneidet die Ebene für t=0 in Q. der Richtungsvektor der Geraden ist ne Normale auf der Ebene.
d.h. du musst in der Richtung 3 weitergehen. nach 2 Seiten, dann hast du die 2 Punkte. Kannst du das?
Gruss leduart


Bezug
                
Bezug
abstand punkt ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:08 Mi 25.06.2008
Autor: Lara102

hm.. 3 auf welcher achse?
muss man da nichts rechnen??
lg lara

Bezug
                        
Bezug
abstand punkt ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 18:21 Mi 25.06.2008
Autor: ardik

Hallo Lara,

> hm.. 3 auf welcher achse?

Schau Dir leduarts Antwort noch mal genau an! ;-)

Keine Achse, auf der Geraden in Richtung des Richtungsvektors.

Versuch, Dir's vorzustellen:
Die Gerade steht senkrecht auf der Ebene und schneidet sie in einem bestimmten Punkt. Wenn Du nun von dem Schnittpunkt aus auf der Geraden jeweils drei Einheiten in jede Richtung gehst, bist Du jeweils am Ziel. Dorthin kommst Du mit Hilfe des besagten Vektors.

> muss man da nichts rechnen??

Oh doch! Um vom Schnittpunkt exakt drei Einheiten weg zu kommen, musst Du etwas rechnen.


Übrigens: Wenn die Gerade nicht senkrecht stünde, ginge es natürlich nicht so einfach, dann müsste man tatsächlich mit der Hesse'schen arbeiten. Siehe dazu auch meine andere Antwort (die in ein paar Minuten kommt).

Schöne Grüße
 ardik

Bezug
        
Bezug
abstand punkt ebene: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:27 Mi 25.06.2008
Autor: Al-Chwarizmi


> Gegeben ist die Ebene E: [mm]10x_{1}+2x_{2}-11x_{3}[/mm] und der in
> E liegende Punkt Q (3/-2/2)

wie lautet die Gleichung der Ebene ?
jede Gleichung hat ein Gleichheitszeichen....

Bezug
        
Bezug
abstand punkt ebene: bzgl. Hesse'sche
Status: (Antwort) fertig Status 
Datum: 18:39 Mi 25.06.2008
Autor: ardik

Hallo Lara,

> Gegeben ist die Ebene E: [mm]10x_{1}+2x_{2}-11x_{3}[/mm]

Da fehlt noch was! Das ist so keine Ebenengleichung. (Allerdings lässt sich das Fehlende aus dem Rest der Aufgabe erschließen).

> und der in E liegende Punkt Q (3/-2/2)
>  b, bestimmen sie alle punkte P der geraden g, die von der
> Ebene den ABstand 3 haben.

> die gerade g wurde in der teilaufgabe zuvor berechnet. sie
> lautet: x= [mm]\vektor{3 \\ -2 \\ 2}[/mm] +t* [mm]\vektor{10 \\ 2 \\ -11}[/mm]


Leduarts Weg ist natürlich hier der wesentlich einfachere.
Aber mit der Hesse'schen geht's auch, Du solltest der Übung halber auch dies nochmal probieren.
  

>  ich habe es jetzt sowohl mit der hesse'schen normalenform
> als auch mit folgendem weg versucht:
> 6=[mm]\left( \vektor{x \\ y \\ z}-\vektor{3 \\ -2 \\2}\right) * \bruch{1}{15}*\vektor{10 \\ 2 \\ -11}[/mm]

Hm. Dieser "folgende Weg" ist doch die Hesse'sche Normalenform...
Allerdings mit kleinem Fehler: Warum steht da vorn eine Sechs?
Für die Hesse'sche müsste da eine Null stehen.
Wenn's die Abstandsformel sein soll, müsste da z.B. ein d (für den Abstand) stehen (und genaugenommen die rechte Seite in Betragsstrichen).
Damit die Punkte den Abstand drei von der Ebene haben, muss da also eine Drei bzw. für die andere Seite Minus Drei (wenn wir ohne Betragsstriche arbeiten) stehen. Für den Vektor [mm]\vektor{x \\ y \\ z}[/mm] setzt Du dann die Gerade ein, multiplizierst aus etc. und kannst schließlich t berechnen. Das wiederum in die Gerade eingesetzt liefert die Punkte.

Da Du ohnehin schon die Koordinatenform hast, kannst Du die x-, y-, z-Zeilen der Gerade auch gleich in diese einsetzen - wenn Du die [mm] $\frac{1}{15}$ [/mm] ebenfalls passend einbindest:
[mm] $\frac{1}{15}*(10*(3+10t)+2*(...)-11*(...)\ [/mm] ...$

Schöne Grüße
 ardik

Bezug
                
Bezug
abstand punkt ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:17 Mo 30.06.2008
Autor: Lara102

das hab ich nicht wirklich verstanden... =(
ich brauch doch für die hessesche in koordinatenform gar keinen normaleneinheitsvektor oder?
vielleicht habe ich es ja doch verstanden.. ich muss also die punkt normalen form aufstellen.. dann setze ich für x die vorher berechnete geradengleichung ein, und setzte das ganze gleich dem abstand, den die punkte haben sollen.
und anschließend bekomme ich für t einen wert raus, oder 2 wegen der betragsstriche und setze den in die geradengleichung ein. dadurch bekomme ich dann den /die punkte?? (für t bekomme ich 1/75 raus.. das stimmt wahrscheinlich nicht oder?)
schreib am mi ne klausur, wär also super, wenn mir das nochmal jemand erklären könnte :)
lg, lara

Bezug
                        
Bezug
abstand punkt ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 21:41 Mo 30.06.2008
Autor: Al-Chwarizmi

hallo lara,

1.) die vollständige Ebenengleichung lautet:

     10 x + 2 y - 11 z - 4 = 0

2.) Die Gerade g ist offensichtlich eine Normale (Senkrechte) zu E,
     da ihr Richtungsvektor ein Normalenvektor von E ist.

3.) Weil  Q  der Schnittpunkt von g mit E ist, musst du also
     nur von diesem Punkt  Q  aus der Geraden g entlang auf
     beide Seiten hin die Strecke  3  abtragen.
     Der Richtungsvektor [mm] \vektor{10\\2\\-11} [/mm] hat die Länge
     [m]\wurzel{10^2+2^2+11^2}=15[/m]. Um ihn auf die Länge
     3 zu reduzieren, muss man ihn durch 5 teilen. Ergebnis:
     [mm] \vektor{2\\0.4\\-2.2}. [/mm]
     Diesen Vektor und seinen Gegenvektor [mm] \vektor{-2\\-0.4\\+2.2} [/mm]
     kannst du jetzt von  Q aus abtragen und erhältst als
     Zielpunkte die gesuchten Punkte  [mm] P_1 [/mm]  und  [mm] P_2 [/mm] .


Gruß    al-Chw.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de