www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - abstandberechnung
abstandberechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

abstandberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:26 Mo 23.08.2004
Autor: zq2001

Ich habe diese Frage in keinem weiteren Forum gestellt.
hallöchen,
wir nehmen momentan im unterricht anwendungsaufgaben zurabstandsberechnung punkt-ebene durch.
wir haben eine ebene mit der gleichung 2x-10y+11z=o und den punkt P (1;1;-2) gegeben. gesucht ist der spiegelpunkt P' zu P. wie bekomm ich die koordinaten von P' raus. wär nett, wenn ich die antwort mit lösungsweg bekomm würde.

        
Bezug
abstandberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:16 Mo 23.08.2004
Autor: nitro1185

Hallo!!Also ich möcchte dir nicht das Beispiel vorrechnen,sondern eine Anleitung geben wie ich es machen würde!

Also:

1.) Bestimme den normalvektor der ebene!
2.) Bestimme daraus den Einheitsneormalvektor (n0)
3.) Bestimme irgendeinen Punkt(A) der Ebene(durch einsetzen)!!
4.) Bestimme den Vektor AP und verwende die "Hessesche" Abstandformel  | / vec AP/*/vec n0/|
5.) Wenn du den Vektor n0 mit dem Abstand(Zahl) multiplizierst,so erhältst du genau den Vektor,der von der ebene zum Punkt P geht!!
6.) Stelle eine Gerade auf -- schneide sie mit der ebene und so erhältst du den Fußpunkt F!!
7.) Hänge /vec PF an F dran und du erhältst P`!!

Viel Glück Frage wenn du noch unsicher bist

Gruß daniel

Bezug
        
Bezug
abstandberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:21 Mo 23.08.2004
Autor: ladislauradu

Hallo!!

ein leicht abweichender Weg als der von Daniel ist folgender:

1) Bestimme den Normalvektor zur Ebene.
2) Schreibe die parametrische Gleichung der Normalgerade zur Ebene durch Punkt P. Sei s der Parameter dieser Gerade.
3) Berechne s für den Schnittpunkt zwischen Gerade und Ebene [mm]s_{0}[/mm]
4) Der punkt P' ist der Punkt der Gerade entsprechend der Parameter [mm]2s_{0}[/mm].

Ich habe die Aufgabe durchgerechnet, und folgendes Ergebnis erhalten:

[mm]P^{\prime} ( \bruch{23}{15} | -\bruch{5}{3} | \bruch{14}{15})[/mm]

Viel Freude am Rechnen,
Ladis

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de