www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - abstandsrechnung
abstandsrechnung < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

abstandsrechnung: aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:24 Di 03.05.2005
Autor: lumpi

Hallo ihr lieben!

Ich habe Probleme bei folgender Aufgabe:
Bestimme denjenigen Punkt auf der Kugeloberfläche  [mm] x^{2}+ y^{2}+ z^{2}=1, [/mm] die vom Punkt (1,1,1) den kleinsten bzw größten abstand haben!

Ich weiß irgendwie nicht wirklich wie ich ansetzen soll! Hab versucht eien allgemeine Punktform für einen Punkt auf einer Kugel aufzustellen, aber das ist irre kompliziert!Ich wollte  [mm] x^{2}+ y^{2}+ z^{2}=1 [/mm] dann als nebenbedingung ansehn! da ich aber keine funktion gegeben habe komme ich auch hiermit nicht weiter! Hat einer von euch eine Idee?

        
Bezug
abstandsrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:53 Di 03.05.2005
Autor: banachella

Hallo!

Habt ihr schon die Lagrange-Multiplikatormethode durchgenommen?
Dein Problem lässt sich schreiben als
      [mm] $(x-1)^2+(y-1)^2+(z-1)^2\to \min [/mm] / [mm] \max [/mm] $
      mit [mm] $x^2+y^2+z^2=1$.... [/mm]

Gruß, banachella

Bezug
                
Bezug
abstandsrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:52 Fr 06.05.2005
Autor: lumpi

hallo!

Danke für die schnelle antwort!Mit Langrange Multiplikatoren haben wir kaum was gemacht, deshalb fehlt mir schlicht und einfach die Übung!Aus dem Grund kann ich bis jetzt auch nicht wirklich viel anfangen mit deinem Tipp :-(! Aber ich werd mir das morgen nochmal angucken und hoffe mich bei fragen an euch wenden zu können!

Bezug
        
Bezug
abstandsrechnung: Argumentativ...
Status: (Antwort) fertig Status 
Datum: 19:06 Di 03.05.2005
Autor: Peter_Pein

Hallo Lumpi (kenn ich Dich nicht vom Nachbarn? ;-)),

die Verbindung zwischen den Punkten extremaler Entfernung zu (1,1,1) mit (1,1,1) selbst muss doch senkrecht auf der Kugeloberfläche stehen - also in Richtung des Raduis verlaufen. Also müssen die gesuchten [mm] $(x_0,y_0,z_0)$ [/mm] alle gleich sein (da ja auch die Koordinaten von (1,1,1) alle gleich sind).

Nun müssen sie auch noch auf der Kugeloberfläche liegen; also [mm] $3\,x_0^2=1$. [/mm]

Grüße,
Peter


Bezug
                
Bezug
abstandsrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:41 Mi 04.05.2005
Autor: merry568

Auf die gleiche Lösung kommt man, wenn man annimmt, dass für jeden Punkt [mm] $x\neq [/mm] 0$ [mm] $P(x):=\frac{x}{|x|}\in S^n$ [/mm] der Punkt der Kugeloberfläche ist, der von $x$ den geringsten Abstand hat. Die Argumentation ist natürlich die gleiche wie bei dir, $x-P(x)$ muss senkrecht auf der Einheitssphäre stehen.

Also einfach [mm] $\frac{x}{|x|}$ [/mm] berechnen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de