www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - ähnliche Matrizen
ähnliche Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ähnliche Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:13 Mi 28.07.2004
Autor: Jessica

Hallo alle zusammen, ich bin gerade am Lernen für ne Klausur. Nun und ich sitze an der Aufgabe und komme nicht ganz weiter. Könnt ihr mir nen Tipp geben?

Es sei [mm]f=(x^2+1)(x+1)^2 \in \IR[x][/mm]
(a) Zeigen sie: Haben zwei Matritzen [mm]A,B\in\IR^{5\times5}[/mm] das Polynom f als Minimalpolynom, d.h. ist [mm]\gamma_A=\gamma_B=f[/mm], so sind A und B ähnlich

(b) Wieviele Klassen ähnlicher Matrizen, die f als Minimalpolynom haben, gib es in [mm]\IR{6\times6}[/mm]? (Mit Beweis)

Also bei (b) habe ich 3 Ähnlichkeitsklassen gefunden. Kann das stimmen?

Bis denne
Jessica

        
Bezug
ähnliche Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:11 Mi 28.07.2004
Autor: Irrlicht

Hallo Jessica,

> Hallo alle zusammen, ich bin gerade am Lernen für ne
> Klausur. Nun und ich sitze an der Aufgabe und komme nicht
> ganz weiter. Könnt ihr mir nen Tipp geben?
>  
> Es sei [mm]f=(x^2+1)(x+1)^2 \in \IR[x][/mm]
>  (a) Zeigen sie: Haben
> zwei Matritzen [mm]A,B\in\IR^{5\times5}[/mm] das Polynom f als
> Minimalpolynom, d.h. ist [mm]\gamma_A=\gamma_B=f[/mm], so sind A und
> B ähnlich
>  

Ueberlege dir, welchen Grad das charakteristische Polynom von A und B haben muss. Dann rufe dir die Teilbarkeitsbeziehung zwischen Minimalpolynom und charakteristischen Polynom ins Gedächtnis. Zeige damit, dass A und B dasselbe charakteristische Polynom haben (und damit sind sie ähnlich).

> (b) Wieviele Klassen ähnlicher Matrizen, die f als
> Minimalpolynom haben, gib es in [mm]\IR{6\times6}[/mm]? (Mit
> Beweis)
>  

Hier kannst du so anfangen wie bei a). Ich finde aber nur 2 mögliche charakteristische Polynome und damit nur 2 Ähnlichkeitsklassen.

> Also bei (b) habe ich 3 Ähnlichkeitsklassen gefunden. Kann
> das stimmen?

Welche hast du denn gefunden?

> Bis denne
> Jessica

Liebe Grüsse,
Irrlicht

Bezug
        
Bezug
ähnliche Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:34 Do 29.07.2004
Autor: Clairvoyant

zu a)
wenn die Minimalpolynome [mm] \gamma_{A}=\gamma_{B}=(x^{2}+1)(x+1)^{2} [/mm] von A und B [mm] \in \IR^{5x5} [/mm] gegeben sind, weisst du ja schonmal, dass der Grad des charakteristischen Polynoms von A und B gleich 5 sein muss.
Mit diesem Wissen bleibt für das charakteristische Polynom nur noch eine Möglichkeit, da das Mininamlpolynom dieses ja teilen muss. Damit weisst du, dass das charakteristische Polynom von A und B gleich ist, womit die beiden ähnlich sind.

zu b)
im [mm] \IR^{6x6} [/mm] finde ich auch nur 2 Ähnlichkeitsklassen.

Bezug
                
Bezug
ähnliche Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:59 Fr 30.07.2004
Autor: Catherine

Hi,
zu dieser Aufgabe hatte ich mir folgendes überlegt:
der Grad vom charakteristichen Polynom ist 6 und somit gleich dem Grad der Invariantenteiler (wenn man diese Multipliziert). somit hätte ich 2 Fälle:
(hier seien p1 und p2 Invariantenteiler)
1. p1=1 und p2=x²+1 oder p1=1 und p2= (x+1)²
=> 2 Ähnlichkeitsklassen
2. p1= x+1 und p2= x+1
=> 1 Ähnlichkeitsklasse
Insgesamt also 3 Ähnlichkeitsklassen
ist das Richtig? wie kommt ihr auf 2 Ähnlichkeitsklassen?

vielen Dank im Voraus
liebe Grüße
Catherine

Bezug
                        
Bezug
ähnliche Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:27 Sa 31.07.2004
Autor: Gnometech

Gruß!

Mir ist die Bezeichnung "Invariantenteiler" unklar, aber auch ich komme nur auf 2 Äquivalenzklassen. Das Minimalpolynom ist ja:

[mm] $\mu [/mm] = [mm] (x^2 [/mm] + 1) (x + [mm] 1)^2$ [/mm]

Jeder echte, irreduzible Teiler von [mm] $\mu$ [/mm] kommt auch im charakteristischen Polynom [mm] $\chi$ [/mm] vor (das ist nicht trivial, aber wahr), also gibt es nur 2 Möglichkeiten, wenn der Grad von [mm] $\chi$ [/mm] gleich 6 ist:

[mm] $\chi [/mm] = [mm] (x^2 [/mm] + [mm] 1)^2 [/mm] (x + [mm] 1)^2$ [/mm]

Oder:

$ [mm] \chi [/mm] = [mm] (x^2 [/mm] + 1) (x + [mm] 1)^4$ [/mm]

Das liegt daran, dass [mm] $x^2 [/mm] + 1$ über [mm] $\IR$ [/mm] irreduzibel ist.

Gruß,

Lars

Bezug
                        
Bezug
ähnliche Matrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:57 So 01.08.2004
Autor: Jessica

Entschuldigung dass ich mich erst jetzt melde. also ich habe das genauso wie Catherine berechnen, sehe aber jetzt ein, dass es nur 2 Klassen gibt. Danke für eure Hilfe.

Bis denne
Jessica

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de