www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Ähnliche Matrizen
Ähnliche Matrizen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ähnliche Matrizen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 18:08 Do 16.07.2009
Autor: Uebungistalles

Aufgabe
Gesucht ist eine invertierbare Matrix  P [mm] \in M(2x2,\IR [/mm] ) mit
[mm] P^{-1} \pmat{ 2 & -1 \\ 4 & -2 } [/mm] P = [mm] \pmat{ 0 & 1 \\ 0 & 0 } [/mm]

[mm] \pmat{ 2 & -1 \\ 4 & -2 }=A \pmat{ 0 & 1 \\ 0 & 0 } [/mm] = B

Entweder ich mache total Mist , oder es geht einfach nicht auf!

P= [mm] \pmat{ a & b \\ c & d } [/mm]     AP=PB

[mm] \pmat{ 2 & -1 \\ 4 & -2 }\pmat{ a & b \\ c & d }=\pmat{ a & b \\ c & d } \pmat{ 0 & 1 \\ 0 & 0 } [/mm]

->  [mm] \pmat{ 2a-c & 2b-d \\ 4a-2c & \red{4}b-2d } [/mm] =  [mm] \pmat{ 0 & a \\ 0 & c } [/mm]

->   2a-c =0  2b-d=a    4a-2c=0  4b-2d=c   -> a=1  c=1  b=d=2

dadurch erhalte ich  P = [mm] \pmat{ 1 & 2 \\ 2 & 3 } [/mm]

Habe  zwischendurch einen Fehler gemacht und der ist mir hier durch das aufschreiben aufgefallen. ist ja nun auch zu schade zum löschen vielleicht sieht jemand ja noch einen Fehler oder weiß eine elegantere Lösung dafür!

        
Bezug
Ähnliche Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:39 Do 16.07.2009
Autor: angela.h.b.


> Gesucht ist eine invertierbare Matrix  P [mm]\in M(2x2,\IR[/mm] )
> mit
>  [mm]P^{-1} \pmat{ 2 & -1 \\ 4 & -2 }[/mm] P = [mm]\pmat{ 0 & 1 \\ 0 & 0 }[/mm]
>  
> [mm]\pmat{ 2 & -1 \\ 4 & -2 }=A \qquad \pmat{ 0 & 1 \\ 0 & 0 }[/mm] = B

>  Entweder ich mache total Mist , oder es geht einfach nicht
> auf!

Hallo,

Leider arbeitest Du nicht heraus, warum Du meinst, "total Mist" gemacht zu haben.

Man kann so vorgehen, wie Du es tust.


> P= [mm]\pmat{ a & b \\ c & d }[/mm]     AP=PB
>  
> [mm]\pmat{ 2 & -1 \\ 4 & -2 }\pmat{ a & b \\ c & d }=\pmat{ a & b \\ c & d } \pmat{ 0 & 1 \\ 0 & 0 }[/mm]
>  
> ->  [mm]\pmat{ 2a-c & 2b-d \\ 4a-2c & 2b-2d }[/mm] =  [mm]\pmat{ 0 & a \\ 0 & c }[/mm]

>  
>  
> ->   2a-c =0  2b-d=a    4a-2c=0  4b-2d=c   -> a=1  c=1  

> b=d=2

Wie Du zu den Lösungen kommst, ist mir völlig unklar.
a=1=c funktioniert ja schonmal nicht,


Das Gleichungssystem an sich ist richtig.

Löse es nochmal, langsam und besinnlich.

Gruß v. Angela

Bezug
                
Bezug
Ähnliche Matrizen: Korrektur
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:48 Do 16.07.2009
Autor: Uebungistalles

Ja der Fehler war zum Schluss bei den Gleichungssystemen! (Die 1 war nur ein Tippfehler bei

2a-c =0  2b-d=a    4a-2c=0  4b-2d=c  

Ich erhalte ja   2a=c   aus  2a-c =0 bzw 4a-2c=0
Habe a also frei gewählt als 1 , daraus erhalte ich c=2
eingesetzt in die 2 übrigen Gleichungen bringt mir 2b-d=1  wähle ich b=2  und d=3  also  [mm] \pmat{ 1 & 2 \\ 2 & 3 } [/mm]

Also nur Schreibfehler!



Bezug
                        
Bezug
Ähnliche Matrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:59 Do 16.07.2009
Autor: angela.h.b.


>   also  [mm]\pmat{ 1 & 2 \\ 2 & 3 }[/mm]

Hallo,

Du kannst ja nun damit die Probe machen und gucken, ob es klappt.

Mir ist immer noch nicht ganz klar, was Deine frage eigentlich war. Irgendwie warst Du ja mit dem Ergebnis nicht zufrieden (?).

Na egal, wenn jetzt alles klar ist, ist's ja gut.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de