www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Ähnlichkeit (Matrizen) prüfen
Ähnlichkeit (Matrizen) prüfen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ähnlichkeit (Matrizen) prüfen: Tipp | Erklärung
Status: (Frage) beantwortet Status 
Datum: 19:22 Sa 22.03.2014
Autor: Kletteraffe

Aufgabe
Prüfen Sie ob die Matrizen $A, B [mm] \in \mathbb{R}^{3 \times 3}$ [/mm] ähnlich sind oder nicht.

$A =$ [mm] \begin{pmatrix} 2 & 1 & 0 \\ 0 & 5 & 3 \\ 0 & -4 & -2 \\ \end{pmatrix} [/mm] $B =$ [mm] \begin{pmatrix} 2 & 1 & 1 \\ 0 & 5 & 3 \\ 0 & -4 & -2 \\ \end{pmatrix} [/mm]

Hallo zusammen,

ich arbeite seit gestern an dieser Aufgabe und komme leider auf keinen guten Ansatz.

Was ich bereits weiß:
- die Determinanten sind gleich (4)
- der Rang ist gleich (3)
- das char. Polynom ist gleich ($charPol(x) = [mm] (2-x)^2 [/mm] (1-x)$)
- die Eigenwerte sind gleich (1, 2 ,2)
- die Spur ist gleich (5)
- die Matrix A ist nicht diagonalisierbar, die Matrix B hingegen schon.

Begriffe wie minimal Polynom und Jordansche NF darf ich nicht nutzen.

Mein aller letzter Ansatz wäre der folgende gewesen:
- $A = [mm] S^{-1} [/mm] B S [mm] \Leftrightarrow [/mm] SA - BS = 0$ aufstellen
- $S$ mit Variablen "füllen" (a-i)
- Das LGS lösen und prüfen ob mehr als nur die Nullmatrix rauskommt.

Aber da es sich bei dieser Aufgabe um eine Klausuraufgabe handelt, die nicht mehr oder weniger Punkte gibt als die restlichen Aufgaben, frage ich mich ob ich einfach etwas übersehen habe oder mich schlicht grob verrechnet habe.. ich meine, für so eine Aufgabe hat man meist nur ein paar Minuten Zeit..


Über einen Tipp würde ich mich sehr freuen! :)

        
Bezug
Ähnlichkeit (Matrizen) prüfen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:27 Sa 22.03.2014
Autor: MaslanyFanclub

Hallo,

> Prüfen Sie ob die Matrizen [mm]A, B \in \mathbb{R}^{3 \times 3}[/mm]
> ähnlich sind oder nicht.
>  
> [mm]A =[/mm] [mm]\begin{pmatrix} 2 & 1 & 0 \\ 0 & 5 & 3 \\ 0 & -4 & -2 \\ \end{pmatrix}[/mm]  
> [mm]B =[/mm] [mm]\begin{pmatrix} 2 & 1 & 1 \\ 0 & 5 & 3 \\ 0 & -4 & -2 \\ \end{pmatrix}[/mm]
>  
> Hallo zusammen,
>  
> ich arbeite seit gestern an dieser Aufgabe und komme leider
> auf keinen guten Ansatz.
>  
> Was ich bereits weiß:
>  - die Determinanten sind gleich (4)
>  - der Rang ist gleich (3)
>  - das char. Polynom ist gleich ([mm]charPol(x) = (2-x)^2 (1-x)[/mm])
>  
> - die Eigenwerte sind gleich (1, 2 ,2)
>  - die Spur ist gleich (5)
>  - die Matrix A ist nicht diagonalisierbar, die Matrix B
> hingegen schon.

Der letzte Punkt zeigt, dass die Matrizen nicht ähnlich sind.(Ähnlichkeit ist eine Äquivalenzrelation).

> Begriffe wie minimal Polynom und Jordansche NF darf ich
> nicht nutzen.
>  
> Mein aller letzter Ansatz wäre der folgende gewesen:
>  - [mm]A = S^{-1} B S \Leftrightarrow SA - BS = 0[/mm] aufstellen
>  - [mm]S[/mm] mit Variablen "füllen" (a-i)
>  - Das LGS lösen und prüfen ob mehr als nur die
> Nullmatrix rauskommt.
>  
> Aber da es sich bei dieser Aufgabe um eine Klausuraufgabe
> handelt, die nicht mehr oder weniger Punkte gibt als die
> restlichen Aufgaben, frage ich mich ob ich einfach etwas
> übersehen habe oder mich schlicht grob verrechnet habe..
> ich meine, für so eine Aufgabe hat man meist nur ein paar
> Minuten Zeit..
>  
>
> Über einen Tipp würde ich mich sehr freuen! :)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de