www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Ähnlichkeit von Matrizen
Ähnlichkeit von Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ähnlichkeit von Matrizen: Äquivalenzrelation
Status: (Frage) beantwortet Status 
Datum: 22:23 Do 20.09.2007
Autor: elefanti

Hallo,

ich will zeigen, dass durch zwei ähnliche Matrizen A,B [mm] \in \IR^{nxn} [/mm] eine Äquivalenzrelation definiert ist.

Ich würde mich freuen, wenn jemand nachfolgendes korregieren mag ;-)



Reflexivität:
ZZ: [mm] \forall A\in \IR^{nxn}: \exists T\in [/mm] GL(n, [mm] \IR^{nxn}): [/mm] A = [mm] T^{-1}AT [/mm]

Sei T die Einheitsmatrix E. Dann gilt:
A = [mm] T^{-1}AT [/mm]



Symmetrie:
ZZ: [mm] \forall A,B\in \IR^{nxn}: \exists S\in [/mm] GL(n, [mm] \IR^{nxn}): [/mm] B = [mm] S^{-1}AS [/mm]
=>  [mm] \exists T\in [/mm] GL(n, [mm] \IR^{nxn}): [/mm] A = [mm] T^{-1}BT [/mm]

Seien S,T die Einheitsmatrix E. Dann gilt:
B = [mm] S^{-1}AS [/mm]
<=> B = A
<=> A = B
<=> A = [mm] T^{-1}BT [/mm]



Transitivität:
ZZ: [mm] \forall A,B,C\in \IR^{nxn}: \exists S\in [/mm] GL(n, [mm] \IR^{nxn}): [/mm] B = [mm] S^{-1}AS \wedge \exists T\in [/mm] GL(n, [mm] \IR^{nxn}): [/mm] A = [mm] T^{-1}CT [/mm]
=>  [mm] \exists U\in [/mm] GL(n, [mm] \IR^{nxn}): [/mm]  B = [mm] T^{-1}CT [/mm]

Seien S,T,U die Einheitsmatrix E. Dann gilt:
B = [mm] S^{-1}AS [/mm]
<=> B=A
<=> A=B
<=> A = [mm] T^{-1}CT [/mm]
<=> B = [mm] T^{-1}CT [/mm]



Liebe Grüße
Elefanti

        
Bezug
Ähnlichkeit von Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:47 Do 20.09.2007
Autor: Bastiane

Hallo elefanti!

> Hallo,
>  
> ich will zeigen, dass durch zwei ähnliche Matrizen A,B [mm]\in \IR^{nxn}[/mm]
> eine Äquivalenzrelation definiert ist.

Du willst also zeigen, dass $A$~$B [mm] \gdw B=S^{-1}AS$ [/mm] für ein entsprechendes S eine Äquivalenzrelation ist.

> Reflexivität:
>  ZZ: [mm]\forall A\in \IR^{nxn}: \exists T\in[/mm] GL(n, [mm]\IR^{nxn}):[/mm]
> A = [mm]T^{-1}AT[/mm]
>
> Sei T die Einheitsmatrix E. Dann gilt:
>  A = [mm]T^{-1}AT[/mm]

[daumenhoch]

> Symmetrie:
>  ZZ: [mm]\forall A,B\in \IR^{nxn}: \exists S\in[/mm] GL(n,
> [mm]\IR^{nxn}):[/mm] B = [mm]S^{-1}AS[/mm]
>  =>  [mm]\exists T\in[/mm] GL(n, [mm]\IR^{nxn}):[/mm] A = [mm]T^{-1}BT[/mm]
>
> Seien S,T die Einheitsmatrix E. Dann gilt:

Das kannst du so nicht machen. Voraussetzung ist ja, dass es ein S gibt, so dass [mm] B=S^{-1}AS, [/mm] und dort steht nirgendwo, dass S die Einheitsmatrix ist. Und das ist normalerweise auch nicht so. Das heißt, du musst für ein allgemeines S ein T finden, so dass dann gilt: [mm] A=T^{-1}BT. [/mm]

Das ist aber auch recht einfach, denn wenn du [mm] T=S^{-1} [/mm] setzt, erhältst du aus der Ausgangsgleichung [mm] B=S^{-1}AS: [/mm]

[mm] B=TAT^{-1} [/mm]

wenn du jetzt von links mit [mm] T^{-1} [/mm] und von rechts mit T multiplizierst, erhältst du: [mm] T^{-1}BT=A, [/mm] also genau das, was du haben willst. :-)

> Transitivität:
>  ZZ: [mm]\forall A,B,C\in \IR^{nxn}: \exists S\in[/mm] GL(n,
> [mm]\IR^{nxn}):[/mm] B = [mm]S^{-1}AS \wedge \exists T\in[/mm] GL(n,
> [mm]\IR^{nxn}):[/mm] A = [mm]T^{-1}CT[/mm]
> =>  [mm]\exists U\in[/mm] GL(n, [mm]\IR^{nxn}):[/mm]  B = [mm]T^{-1}CT[/mm]

>  
> Seien S,T,U die Einheitsmatrix E. Dann gilt:

Hier das gleiche: du darfst nicht voraussetzen, dass S, T und U die Einheitsmatrix sind, sondern musst es allgemein zeigen. Versuchst du es noch einmal?

Viele Grüße
Bastiane
[cap]

Bezug
                
Bezug
Ähnlichkeit von Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:04 Fr 21.09.2007
Autor: elefanti

Hallo Bastiane,

ersteinmal vielen Dank für die Korrektur!


Zur Symmetrie habe ich nun:
Symmetrie:
ZZ:  [mm] \forall A,B\in \IR^{nxn}: \exists S\in GL(n,\IR^{nxn}): [/mm]  B = [mm] S^{-1}AS [/mm] $
=>   [mm] \exists T\in [/mm]  GL(n, [mm] \IR^{nxn}): [/mm]  A = [mm] T^{-1}BT [/mm]  

Sei [mm] T=S^{-1}. [/mm] Dann gilt:
B = [mm] TAT^{-1} [/mm]
<=> [mm] T^{-1}B [/mm] = [mm] T^{-1}TAT^{-1} [/mm]
<=> [mm] T^{-1}BT [/mm] = [mm] T^{-1}TAT^{-1}T [/mm]
<=> [mm] T^{-1}BT [/mm] = A
<=> [mm] A=T^{-1}BT [/mm]


Ich habe dazu auch noch eine Frage: Warum wählt man [mm] T=S^{-1} [/mm] und nicht T=S?


Aber bei der Transitivität komme ich so leider nicht weiter:
ZZ: [mm] \forall A,B,C\in \IR^{nxn}: \exists S\in [/mm] GL(n, [mm] \IR^{nxn}): [/mm] B =  [mm] S^{-1}AS \wedge \exists T\in GL(n,\IR^{nxn}): [/mm]  A =  [mm] T^{-1}CT [/mm] =>  [mm] \exists U\in [/mm]  GL(n, [mm] \IR^{nxn}): [/mm] B = [mm] T^{-1}CT [/mm]

Angenommen ich wähle ebenfalls [mm] T=S^{-1}. [/mm] Dann erhalte ich:
B =  [mm] S^{-1}AS [/mm]
<=> B =  [mm] TAT^{-1} [/mm]
wegen A =  [mm] T^{-1}CT [/mm] gilt:
<=>  B =  [mm] TT^{-1}CTT^{-1} [/mm]
<=> B = C
und ich will ja auf  B = [mm] T^{-1}CT [/mm] kommen.


Liebe Grüße
Elefanti

Bezug
                        
Bezug
Ähnlichkeit von Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:44 Fr 21.09.2007
Autor: dormant

Hi!

> Hallo Bastiane,
>  
> ersteinmal vielen Dank für die Korrektur!
>  
>
> Zur Symmetrie habe ich nun:
>  Symmetrie:
>  ZZ:  [mm]\forall A,B\in \IR^{nxn}: \exists S\in GL(n,\IR^{nxn}):[/mm]
>  B = [mm]S^{-1}AS[/mm] $
>   =>   [mm]\exists T\in[/mm]  GL(n, [mm]\IR^{nxn}):[/mm]  A = [mm]T^{-1}BT[/mm]  
>
> Sei [mm]T=S^{-1}.[/mm] Dann gilt:
>  B = [mm]TAT^{-1}[/mm]
>  <=> [mm]T^{-1}B[/mm] = [mm]T^{-1}TAT^{-1}[/mm]

>  <=> [mm]T^{-1}BT[/mm] = [mm]T^{-1}TAT^{-1}T[/mm]

>  <=> [mm]T^{-1}BT[/mm] = A

>  <=> [mm]A=T^{-1}BT[/mm]

>  
>

Zeigen soll man Folgendes:

[mm] A=S^{-1}BS \Rightarrow B=T^{-1}AT [/mm] für S, T [mm] \in [/mm] GL.

Beweis: [mm] A=S^{-1}BS \gdw [/mm] SA=BS [mm] \gdw SAS^{-1}=B [/mm]

> Ich habe dazu auch noch eine Frage: Warum wählt man
> [mm]T=S^{-1}[/mm] und nicht T=S?

Jetzt will man das formgerecht machen und die invertierte Matrix auf der linken Seite haben, deswegen setzt man [mm] T:=S^{-1} [/mm] und hat:

[mm] B=SAS^{-1}=T^{-1}AT [/mm]

> Aber bei der Transitivität komme ich so leider nicht
> weiter:
>  ZZ: [mm]\forall A,B,C\in \IR^{nxn}: \exists S\in[/mm] GL(n,
> [mm]\IR^{nxn}):[/mm] B =  [mm]S^{-1}AS \wedge \exists T\in GL(n,\IR^{nxn}):[/mm]
>  A =  [mm]T^{-1}CT[/mm] =>  [mm]\exists U\in[/mm]  GL(n, [mm]\IR^{nxn}):[/mm] B =
> [mm]T^{-1}CT[/mm]

Mensch, je weniger Quantoren, desto besser. Zu zeigen ist:

[mm] A=S^{-1}BS [/mm] und [mm] B=T^{-1}CT \Rightarrow A=U^{-1}CU [/mm] für S, T, U [mm] \in [/mm] GL.
  

> Angenommen ich wähle ebenfalls [mm]T=S^{-1}.[/mm] Dann erhalte ich:

Wählen ist schlecht. Konstruieren ist besser. Man will U aus S und T erhalten.

>  B =  [mm]S^{-1}AS[/mm]
>  <=> B =  [mm]TAT^{-1}[/mm]

>  wegen A =  [mm]T^{-1}CT[/mm] gilt:
>  <=>  B =  [mm]TT^{-1}CTT^{-1}[/mm]
>  <=> B = C

Naja, mit [mm] T=S^{-1} [/mm] ist das keine große Überraschung.

>  und ich will ja auf  B = [mm]T^{-1}CT[/mm] kommen.

Nein, das willst du nicht. Du sollst zeigen, dass A zu C symmetrisch ist. Dass B zu C symmetrisch ist, ist Voraussetzung.

Voraussetzung: [mm] A=S^{-1}BS [/mm] und [mm] B=T^{-1}CT. [/mm]

Z.z.: [mm] \exists U\in [/mm] GL: [mm] A=U^{-1}CU. [/mm]

[mm] A=S^{-1}BS \gdw SAS^{-1}=B [/mm] und aus [mm] B=T^{-1}CT [/mm]

[mm] \Rightarrow SAS^{-1}=T^{-1}CT \gdw A=S^{-1}T^{-1}CTS. [/mm]

Setze U:=TS und beweise, dass [mm] S^{-1}T^{-1}=U^{-1}. [/mm]

Gruß,
dormant

Bezug
        
Bezug
Ähnlichkeit von Matrizen: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:59 Fr 21.09.2007
Autor: elefanti

Hallo ihr zwei,

ich möchte mich für eure Hilfe bedanken :-)


Liebe Grüße
Elefanti

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de