www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Äquiv. Aussagen bzgl. Matrizen
Äquiv. Aussagen bzgl. Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquiv. Aussagen bzgl. Matrizen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:07 Mi 14.12.2005
Autor: dee-no

Aufgabe
Es sei [mm] A \in M(2\times2,K) [/mm]. Zeige, dass die folgenden Aussagen äquivalent sind:
(i) [mm] AB = BA , \forall B \in M(2\times2,K) [/mm]
(ii) Es gibt ein [mm] \lambda \in K mit A=\lambda E_{2}=\pmat{ \lambda & 0 \\ 0 & \lambda } [/mm]

Holla alle zusammen!

So hier ist mein Problem. Gezeigt habe ich (ii) schon für
[mm] B= \pmat{ 1 & 0 \\ 1 & 0 } bzw. B= \pmat{ 0 & 1 \\ 0 & 1 } [/mm]
Woher weiß ich jetzt, dass diese aussage für alle B gilt?
Wie kann ich (i) zeigen?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Grüße dee-no!

        
Bezug
Äquiv. Aussagen bzgl. Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:30 Mi 14.12.2005
Autor: mathedman

Berechne mal [mm]AB[/mm] und [mm]BA[/mm] für ein paar Matrizen [mm]B[/mm], die genau einen 1-Eintrag haben und sonst nur Nullen haben.


Bezug
                
Bezug
Äquiv. Aussagen bzgl. Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:09 Mi 14.12.2005
Autor: dee-no

Danke erst mal für den Tipp, hat etwas gedauert, aber geklappt!

Leider komm ich bei Aufgabenteil (i) immer noch nich so richtig weiter!
Wäre echt nett, wenn man mir noch ma n bischen unter die Arme greifen würde!

Gruß dee-no.

Bezug
                        
Bezug
Äquiv. Aussagen bzgl. Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:20 Mi 14.12.2005
Autor: SEcki


> Danke erst mal für den Tipp, hat etwas gedauert, aber
> geklappt!

Aha ...

> Leider komm ich bei Aufgabenteil (i) immer noch nich so
> richtig weiter!

Was hat denn geklappt? Da sind keine zwei Aufgaben - du sollst zeigen, dass die zwei Aussagen äquivalent sind. Und dazu nimmst du dir ein beliebiges A, das die Bedingung (i) erfüllt, dann multiplizierst du die oben genannte Matrizen dran - was kann man denn folgern? Dir Rückrichtung (von ii nach i) ist trivial.

SEcki

Bezug
                                
Bezug
Äquiv. Aussagen bzgl. Matrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:13 Mi 14.12.2005
Autor: dee-no

Es hat geklappt, nach zu weisen, dass (i) (ii) impliziert.
Mir is auch gerade aufgefallen, dass der Rückweg nich wirklich so kompliziert is wie ich dachte.
trotzdem danke noch ma!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de