www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Logik" - äquivalentes Umformen
äquivalentes Umformen < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

äquivalentes Umformen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:21 Di 04.11.2008
Autor: TeamBob

Aufgabe
Beweisen Sie durch äquivalentes Umformen, dass folgende aussagenlogische Ausdrücke für beliebige
aussagenlogische Ausdrücke A, B, C und D semantisch äquivalent sind:

a) ((A _ B) ^ (C _ D)) und ¬((¬A ^ ¬B) _ (¬C ^ ¬D))

b) ((A _ B) _ (C _ D)) und (((A _ C) _ D) _ B)

Ich habe schon probiert die ganzen Dinge hin und her umzustellen, aber ich bin nie auf die richtige Lösung gekommen das sie semantisch äquivalent sind.
Kann mir jemand helfen diese Aufgabe zu lösen. Das ist die letzte Aufgabe auf dem Arbeitsbatt und die bekomme ich nicht hin


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
äquivalentes Umformen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:36 Di 04.11.2008
Autor: Al-Chwarizmi


> Beweisen Sie durch äquivalentes Umformen, dass folgende
> aussagenlogische Ausdrücke für beliebige
>  aussagenlogische Ausdrücke A, B, C und D semantisch
> äquivalent sind:
>  
> a) ((A _ B) ^ (C _ D)) und ¬((¬A ^ ¬B) _ (¬C ^ ¬D))
>  
> b) ((A _ B) _ (C _ D)) und (((A _ C) _ D) _ B)
>  
> Ich habe schon probiert die ganzen Dinge hin und her
> umzustellen, aber ich bin nie auf die richtige Lösung
> gekommen das sie semantisch äquivalent sind.


Hallo TeamBob,

es wäre sehr nützlich, wenn du die Terme zuerst mit den
richtigen Symbolen aus dem Formeleditor

         [mm] $\vee$ $\wedge$ [/mm]

       \vee     \wedge

schreiben würdest. Mir ist nicht klar, was du mit dem "_"  meinst.

LG

Bezug
        
Bezug
äquivalentes Umformen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:34 Di 04.11.2008
Autor: TeamBob

Beweisen Sie durch äquivalentes Umformen, dass folgende
> aussagenlogische Ausdrücke für beliebige
>  aussagenlogische Ausdrücke A, B, C und D semantisch
> äquivalent sind:
>  
> a) ((A v B) ^ (C v D)) und ¬((¬A ^ ¬B) v (¬C ^ ¬D))
>  
> b) ((A v B) v (C v D)) und (((A v  C) v  D) v B)
>  
> Ich habe schon probiert die ganzen Dinge hin und her
> umzustellen, aber ich bin nie auf die richtige Lösung
> gekommen das sie semantisch äquivalent sind.


Bezug
                
Bezug
äquivalentes Umformen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:29 Di 04.11.2008
Autor: Al-Chwarizmi


> Beweisen Sie durch äquivalentes Umformen, dass folgende
>  > aussagenlogische Ausdrücke für beliebige

>  >  aussagenlogische Ausdrücke A, B, C und D semantisch
>  > äquivalent sind:

>  >  
> > a) ((A v B) ^ (C v D)) und ¬((¬A ^ ¬B) v (¬C ^ ¬D))
>  >  
> > b) ((A v B) v (C v D)) und (((A v  C) v  D) v B)


Na, so geht's auch, ist insbesondere im Eingabetext angenehmer.
Es geht bei den Nachweisen eigentlich nur um eine etwas
[mm] langw\vektor{ier\\eil}ige [/mm] Aneinanderreihung elementarer Umformungsregeln
für boolesche Terme: Kommutativ-, Assoziativ-, Distributiv-
gesetze, De Morgan'sche Gesetze etc.

sieh da nach:  []Boolesche Algebra

Bei der ersten Aufgabe würde ich mal mit dem Term auf
der rechten Seite (dem mit den vielen Negationen) anfangen
und nachschauen, welche Gesetze der Liste sich eignen, um
die Negationen loszuwerden. Man sieht, dass das zweite De
Morgansche Gesetz (8') sofort eine Vereinfachung bringt.
Und dann so weiter machen !

In der zweiten Aufgabe geht es nur um die Assoziativität
und Kommutativität der Disjunktion, also um die Gesetze
(1') und (2') aus der Liste, die man allerdings recht oft
anwenden muss, um vom linken zum rechten Term
(oder umgekehrt) zu kommen.

LG










Bezug
                        
Bezug
äquivalentes Umformen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:20 Di 04.11.2008
Autor: TeamBob

Also heißt das, dass bei der 1. auf Aufgabe
auf der rechten seite aus
¬((¬A ^ ¬B) v (¬C ^ ¬D))
das wird
((A ^ B) v [mm] ¬(C^B)) [/mm]
wird???

Ich verstehe nicht ganz die ganzen schritte die man da tun muss um auf das richtige ergebnis zu kommen. Könntest du mir da helfen, weil es scheint so als wenn du dich damit ganz gut auskennst

Bezug
                                
Bezug
äquivalentes Umformen: Weg in Einzelschritten
Status: (Antwort) fertig Status 
Datum: 17:31 Di 04.11.2008
Autor: Al-Chwarizmi

¬((¬A ^ ¬B) v (¬C ^ ¬D))

zweimalige Anwendung von (8')

¬(¬(A v B) v ¬(C v D))

Anwendung von (8)

¬(¬((A v B) ^ (C v D)))

Anwendung von (7)

(A v B) ^ (C v D)







Bezug
                                
Bezug
äquivalentes Umformen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:36 Di 04.11.2008
Autor: Marcel

Hallo,

> Also heißt das, dass bei der 1. auf Aufgabe
> auf der rechten seite aus
> ¬((¬A ^ ¬B) v (¬C ^ ¬D))
>  das wird
>  ((A ^ B) v [mm]¬(C^B))[/mm]
>  wird???
>  
> Ich verstehe nicht ganz die ganzen schritte die man da tun
> muss um auf das richtige ergebnis zu kommen. Könntest du
> mir da helfen, weil es scheint so als wenn du dich damit
> ganz gut auskennst

machen wir es mal Schritt für Schritt:
Gegeben ist
¬((¬A ^ ¬B) v (¬C ^ ¬D))

Das ist zunächst das gleiche wie

¬(X v Y) mit X:=¬A ^ ¬B und Y:=¬C ^ ¬D.

Nach dem Morgan gilt
¬(X v Y)=¬X ^ ¬Y, also

¬((¬A ^ ¬B) v (¬C ^ ¬D))=((¬(¬A ^ ¬B)) ^(¬(¬C ^ ¬D)))

Wieder liefert uns de Morgan:
¬(¬A ^ ¬B)= ¬(¬A) v ¬(¬B) und da allgemein ¬(¬R)=R, bedeutet das nichts anderes als
¬(¬A ^ ¬B)= ¬(¬A) v ¬(¬B)=A v B.

Analog erkennt man
¬(¬C ^ ¬D)=C v D.

Also:

¬((¬A ^ ¬B) v (¬C ^ ¬D))=((¬(¬A ^ ¬B)) ^(¬(¬C ^ ¬D)))
=(A v B) ^ (C v D).

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de