www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Äquivalenz
Äquivalenz < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenz: Tipp
Status: (Frage) beantwortet Status 
Datum: 12:59 Mi 16.12.2009
Autor: da_kiwi

Aufgabe
(a) Sei [mm] k\ge1 [/mm] eine natürliche Zahl. Beweisen Sie, dass für alle natürlichen Zahlen [mm] n\ge1 [/mm] stets die Ungleichung [mm] k\le k^n [/mm] gilt, und dass darüber hinaus für alle natürlichen [mm] n\ge1 [/mm] die Äquivalenz [mm] k=k^n \gdw [/mm] k=1 gültig ist.

Hey,

[mm] k\le k^n [/mm]
[mm] k\le k*k^{n-1} [/mm]

Daraus folgt das die Ungleichung gilt. (Habs zusätzlich noch mit vollständiger Induktion bewiesen.)

Wie zeig ich nun die Äquivalenz und was hat das mit dem ersten Teil der Aufgabe zu tun?

lg

        
Bezug
Äquivalenz: Antwort
Status: (Antwort) fertig Status 
Datum: 13:06 Mi 16.12.2009
Autor: felixf

Hallo!

> (a) Sei [mm]k\ge1[/mm] eine natürliche Zahl. Beweisen Sie, dass
> für alle natürlichen Zahlen [mm]n\ge1[/mm] stets die Ungleichung
> [mm]k\le k^n[/mm] gilt, und dass darüber hinaus für alle
> natürlichen [mm]n\ge1[/mm] die Äquivalenz [mm]k=k^n \gdw[/mm] k=1 gültig
> ist.
>
> [mm]k\le k^n[/mm]
> [mm]k\le k*k^{n-1}[/mm]
>  
> Daraus folgt das die Ungleichung gilt. (Habs zusätzlich
> noch mit vollständiger Induktion bewiesen.)

So solltest du das aber ganz bestimmt nicht aufschreiben, das sind naemlich zwei unzusammenhaengende Formeln. Ein Beweis ist das nicht.

> Wie zeig ich nun die Äquivalenz und was hat das mit dem
> ersten Teil der Aufgabe zu tun?

Die Aeqiuvalenz zeigst du gar nicht, da sie schlichtweg falsch ist. Ist $n = 1$, so gilt immer $k = [mm] k^n$. [/mm] Und $n = 1$ ist nach Voraussetzung zugelassen.

Soll da evtl. "... fuer alle natuerlichen $n > 1$ die Aeqiuvalenz $k = [mm] k^n \gdw [/mm] k = 1$ gueltig ist" stehen?

Zeige dazu, dass aus $n > 1$ folgt [mm] $k^n [/mm] > k$. Kannst fast genauso tun wie beim Beweis zu [mm] $k^n \ge [/mm] k$.

LG Felix


Bezug
                
Bezug
Äquivalenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:11 Do 17.12.2009
Autor: da_kiwi

Hey

> Soll da evtl. "... fuer alle natuerlichen [mm]n > 1[/mm] die
> Aeqiuvalenz [mm]k = k^n \gdw k = 1[/mm] gueltig ist" stehen?

Ja, denke ich auch.
  

> Zeige dazu, dass aus [mm]n > 1[/mm] folgt [mm]k^n > k[/mm]. Kannst fast
> genauso tun wie beim Beweis zu [mm]k^n \ge k[/mm].
>  
> LG Felix

Also aus n>1 => [mm] k^n>k [/mm]   (in dem man einfach die erste Ungleichung mit k multipliziert)

Muss man nicht dazu die Richtungen [mm] "\Rightarrow" [/mm] und [mm] "\Leftarrow" [/mm] zeigen? Bei deinem Vorschlag ist mir nicht klar, wieso die Gleicheit von k = [mm] k^n \gdw [/mm] k = 1 gelten sollte...

lg da_kiwi

Bezug
                        
Bezug
Äquivalenz: Antwort
Status: (Antwort) fertig Status 
Datum: 18:36 Do 17.12.2009
Autor: kuemmelsche

Guten Abend,

> Hey
>  
> > Soll da evtl. "... fuer alle natuerlichen [mm]n > 1[/mm] die
> > Aeqiuvalenz [mm]k = k^n \gdw k = 1[/mm] gueltig ist" stehen?
>  
> Ja, denke ich auch.
>    
> > Zeige dazu, dass aus [mm]n > 1[/mm] folgt [mm]k^n > k[/mm]. Kannst fast
> > genauso tun wie beim Beweis zu [mm]k^n \ge k[/mm].
>  >  
> > LG Felix
>  
> Also aus n>1 => [mm]k^n>k[/mm]   (in dem man einfach die erste
> Ungleichung mit k multipliziert)
>
> Muss man nicht dazu die Richtungen [mm]"\Rightarrow"[/mm] und
> [mm]"\Leftarrow"[/mm] zeigen? Bei deinem Vorschlag ist mir nicht
> klar, wieso die Gleicheit von k = [mm]k^n \gdw[/mm] k = 1 gelten
> sollte...
>  

k ist aus [mm] $\IN$, [/mm] und damit bedeutet $k [mm] \not= [/mm] 1$ einfach $k<1$ (was sollte es denn sonst sein?) Es ist also eine Art Kontraposition. Du zeigst also aus [mm] $k\not= [/mm] 1$ folgt $k< [mm] k^n$ [/mm] (das ist wegen der ersten Aussage äquivalent zu [mm] $k\not= k^n$). [/mm]

Zur Frage mit den beiden Richtungen. Die eine Richtung von rechts nach links ist recht trivial (und ich verwende dieses Wort eig sehr selten). Von links nach rechts kannst du auch einfach die Gleichung [mm] $k=k^n$ [/mm] mit [mm] $k^{-1}$ [/mm] multiplizieren und umstellen, dabei aber beachten, dass $-1 [mm] \notin \IN$. [/mm] Dann musst du aber denke ich noch soetwas wie eine Fallunterscheidung machen, daher find ich die idee mit der Kontraposition gar nicht mal so schlecht^^

> lg da_kiwi

lg Kai

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de