www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Äquivalenz, Abbildungen
Äquivalenz, Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenz, Abbildungen: Ich brauch Hilfe
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:36 Sa 23.10.2004
Autor: kleines-sax

Hallo,
ich bin zufällig auf folgende aufgabe gestoßen.

Es sein X,Y nichtleere Mengen und  [mm] \varepsilon: \to [/mm] Y eine Abbildung. Zeigen Sie die Äquivalenz der folgenden Aussagen:

1)  [mm] \varepsilon [/mm] ist injektiv
2) Für alle Teilmengen A [mm] \subseteq [/mm] X ist [mm] \varepsilon^-{1}( \varepsilon(A))=A. [/mm]
3) Für alle Teilmengen A,B [mm] \subseteq [/mm] X ist  [mm] \varepsilon(A \cap [/mm] B)= [mm] \varepsilon(A) \cap \varepsilon(B) [/mm]
Mein Ansatz der mir nicht wirklich weiterhilft:
[mm] \varepsilon [/mm] ist injektiv wenn aus  [mm] \varepsilon(x1)= \varepsilon(x2) [/mm] stets (x1)=(x2) folgt.
1) ist Voraussetzung für 2)
Wenn A [mm] \subseteq [/mm] X ist, ist x [mm] \in [/mm] A und x [mm] \in [/mm] X
Inverse bedeutet das  [mm] \varepsilon^{-1}: [/mm] Y [mm] \to [/mm] X
aber wie kann ich das denn jetzt auf die aufgabe anwenden, ich hab das noch nicht ganz verstanden. Vielleicht könnt ihr mir ja ein bisschen weiterhelfen. Vielen Dank!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

lg kleines-sax

        
Bezug
Äquivalenz, Abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:25 Sa 23.10.2004
Autor: spezies_64738

Sei [mm] \varepsilon [/mm] : X [mm] \to [/mm] Y
[mm] \varepsilon^{-1} [/mm] Ist nicht die Umkehrfunktion von [mm] \varepsilon, [/mm] denn eine injektive Funktion ist im Allgemeinen nicht invertierbar. Viel mehr ist mit [mm] \varepsilon(M)^{-1} [/mm] das Urbild von M [mm] \subseteq [/mm] Y gemeint:
[mm] \varepsilon(M)^{-1} [/mm] := { x [mm] \in [/mm] X | [mm] \varepsilon(x) \in [/mm] M}
Es reicht nun zu zeigen, dass [mm] \varepsilon^{-1}(\varepsilon(A)) \subseteq [/mm] A und umgekehrt, falls [mm] \varepsilon [/mm] injektiv ist.
Wenn [mm] \varepsilon [/mm] injektiv ist gibt es aber zu jedem y [mm] \in \varepsilon(A) [/mm] höchstens ein Urbild, woraus die inklusion [mm] \varepsilon^{-1}(\varepsilon(A)) \subseteq [/mm] A folgt.
Beim "zurückholen" von [mm] \varepsilon(A) [/mm] durch [mm] \varepsilon^{-1} [/mm] könnte es höchstens passieren, dass es zu irgend einem Element kein Urbild gibt, weil surjektivität nicht gefordert ist. Diese Elemente werden aber gerade ausgeschlossen, weil wir [mm] \varepsilon^{-1} [/mm] ja nur auf Elemente anwenden, die im Bild von [mm] \varepsilon [/mm] liegen, also muss A [mm] \subseteq \varepsilon^{-1}(\varepsilon(A)) [/mm]
[mm] \Box [/mm]
(Das ist natürlich noch kein exakter Beweis, aber wenn man das formal hinschreibt steht der Beweis da. )

Andersherum sei jetzt [mm] \varepsilon^{-1}(\varepsilon(A)) [/mm] = A, und zwar sogar für alle A [mm] \subseteq [/mm] X

Nunja, nehmen wir doch einmal an [mm] \varepsilon [/mm] wäre nicht injektiv, speziell sollen a und b, ( beide [mm] \in [/mm] X natürlich) auf das gleiche Element y abgebildet werden. Dann nehmen wir uns die Menge A := {a} wenden [mm] \epsilon [/mm] darauf an, und erhalten y. Das Urbild von y ist aber gerade {a,b} [mm] \not= [/mm] A  [mm] \Rightarrow [/mm] Wiederspruch zur Vorrausstzung.
Also muss [mm] \varepsilon [/mm] injektiv sein.
Formales hinschreiben liefert wieder den zitierfähigen Beweis.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de