www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Finanzmathematik" - Äquivalenz/Verrentung
Äquivalenz/Verrentung < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenz/Verrentung: Berechnungsfehler ?
Status: (Frage) beantwortet Status 
Datum: 18:08 Do 06.08.2009
Autor: phisch

Aufgabe
  Jemand schuldet 10.000 € (fällig sofort), 30.000 € (fällig in 4,25 Jahren) und 20.000 € (fällig in 8 Jahren). Es wird neu vereinbart: Die gesamte Schuld soll getilgt werden durch über 10 Jahre halbjährlich nachschüssig zu zahlende Raten, beginnend in 2 Jahren. Wie hoch sind diese Raten ? Es wird stets nach der Sparbuchmethode mit einem Zinssatz von 7,5 % p.a. verzinst.  

Moin erstmal an alle.

Ich habe die Schulden nach üblicher Äquivalenzgleichung berechnet, also R in zwei Jahren. Das wären dann 77.200,07. Dies dann dividiert durch 1,5433 [mm] (1,075^6) [/mm] ergibt 50.022,72. Dann die Ersatzrentenrate (2,0375 r) in die nachschüssige Rentenformel eingesetzt und 13,98556495 erhalten. Dividiere ich dann mein R mit 13,..., erhalte ich r= 3.576,74.

Ergebnis lt. Prof: 3.574,95

wo liege ich falsch ?
ps: habe es noch nich so mit den Formeln hier.

vielen Dank im Voraus!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Äquivalenz/Verrentung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:21 Do 06.08.2009
Autor: Josef


>  Jemand schuldet 10.000 € (fällig sofort), 30.000 €
> (fällig in 4,25 Jahren) und 20.000 € (fällig in 8
> Jahren). Es wird neu vereinbart: Die gesamte Schuld soll
> getilgt werden durch über 10 Jahre halbjährlich
> nachschüssig zu zahlende Raten, beginnend in 2 Jahren. Wie
> hoch sind diese Raten ? Es wird stets nach der
> Sparbuchmethode mit einem Zinssatz von 7,5 % p.a. verzinst.
> Moin erstmal an alle.
>  
> Ich habe die Schulden nach üblicher Äquivalenzgleichung
> berechnet, also R in zwei Jahren. Das wären dann
> 77.200,07. Dies dann dividiert durch 1,5433 [mm](1,075^6)[/mm]
> ergibt 50.022,72. Dann die Ersatzrentenrate (2,0375 r) in
> die nachschüssige Rentenformel eingesetzt und 13,98556495
> erhalten. Dividiere ich dann mein R mit 13,..., erhalte ich
> r= 3.576,74.
>  
> Ergebnis lt. Prof: 3.574,95
>  
> wo liege ich falsch ?


Hier bietet sich die Abzinsung an.

Der Ansatz lautet:

[mm] 10.000+\bruch{30.000}{1,075^4 *(1+0,075*0,25)} [/mm] + [mm] \bruch{20.000}{1,075^8} [/mm] = [mm] R*(2+\bruch{0,075}{2}*1)*\bruch{1,075^{10}-1}{0,075}*\bruch{1}{1,075^{12}} [/mm]

R = 3.574,95


Viele Grüße
Josef


Bezug
                
Bezug
Äquivalenz/Verrentung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:18 Do 06.08.2009
Autor: phisch

vielen lieben dank für die schnelle antwort, und das bei dem wetter ! ich verneige mich.
- aber auf die abzinsung wär ich wohl dies jahr nicht mehr gekommen. ich hatte immer diese "in zwei jahren" vor augen...naja, ich hab´s verstanden und hoffe es bringt mich weiter.
schönes wochenende noch !

Bezug
        
Bezug
Äquivalenz/Verrentung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:17 Do 06.08.2009
Autor: Josef


>  Jemand schuldet 10.000 € (fällig sofort), 30.000 €
> (fällig in 4,25 Jahren) und 20.000 € (fällig in 8
> Jahren). Es wird neu vereinbart: Die gesamte Schuld soll
> getilgt werden durch über 10 Jahre halbjährlich
> nachschüssig zu zahlende Raten, beginnend in 2 Jahren. Wie
> hoch sind diese Raten ? Es wird stets nach der
> Sparbuchmethode mit einem Zinssatz von 7,5 % p.a. verzinst.
> Moin erstmal an alle.
>  
> Ich habe die Schulden nach üblicher Äquivalenzgleichung
> berechnet, also R in zwei Jahren. Das wären dann
> 77.200,07. Dies dann dividiert durch 1,5433 [mm](1,075^6)[/mm]
> ergibt 50.022,72. Dann die Ersatzrentenrate (2,0375 r) in
> die nachschüssige Rentenformel eingesetzt und 13,98556495
> erhalten. Dividiere ich dann mein R mit 13,..., erhalte ich
> r= 3.576,74.
>  

[ok]


> Ergebnis lt. Prof: 3.574,95
>  
> wo liege ich falsch ?

du hast richtig gerechnet!

Die Äquivalenz von Zahlungsreihen bei linearer Verzinsung ist abhängig von der Wahl des Bezugsstichtags. Zwei Zahlungen sind also beim gleichen Zinssatz äquivalent als auch nicht äquivalent - im Widerspruch zu jeder Logik. Die Widersprüchlichkeiten lassen sich prinzipiell nicht vermeiden (es sei denn, man verzichtet vollständig auf die lineare Verzinsung). Daher empfiehlt es sich, eine Vereinbarung darüber zu treffen, welcher Stichtag bei linearer Verzinsung gewählt werden soll.


Viele Grüße
Josef



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de