www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Diskrete Mathematik" - Äquivalenz beweisen
Äquivalenz beweisen < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenz beweisen: Tipp
Status: (Frage) beantwortet Status 
Datum: 19:47 So 04.11.2012
Autor: Coup

Aufgabe
Bestimme, welche der logischen Aussageformen für zwei Aussagen A und B aequivalent sind und beweisen/widerlegen Sie es
1.A=>B
[mm] 2.\neg [/mm] A => [mm] \neg [/mm] B
[mm] 3.\neg [/mm] A v B
[mm] 4.\neg [/mm] B => [mm] \neg [/mm] A
5. [mm] \neg(A [/mm] v [mm] \neg [/mm] B )
6. A v [mm] \neg [/mm] B

Hi.
Ich verstehe die Aufgabe nicht wirklich.
Mag mir jemand helfen damit ich den Rest bearbeiten kann ?
Ein Anstoß wäre klasse. Irgendwas zieht mich zur Anfertigung von Wertetabellen.
Äquivalenz bedeutet ja das sowohl A oder B wahr  oder falsch sind.
Demnach müsste Punkt 1. einer der gesuchten sein da aus etwas falschem nichts wahres folgen kann ( f,f )  oder ?

grüße
Micha

        
Bezug
Äquivalenz beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:44 So 04.11.2012
Autor: schachuzipus

Hallo Micha,


> Bestimme, welche der logischen Aussageformen für zwei
> Aussagen A und B aequivalent sind und beweisen/widerlegen
> Sie es
>  1.A=>B
>  [mm]2.\neg[/mm] A => [mm]\neg[/mm] B

>  [mm]3.\neg[/mm] A v B
>  [mm]4.\neg[/mm] B => [mm]\neg[/mm] A

>  5. [mm]\neg(A[/mm] v [mm]\neg[/mm] B )
>  6. A v [mm]\neg[/mm] B
>  Hi.
>  Ich verstehe die Aufgabe nicht wirklich.
>  Mag mir jemand helfen damit ich den Rest bearbeiten kann
> ?
>  Ein Anstoß wäre klasse. Irgendwas zieht mich zur
> Anfertigung von Wertetabellen.

Das ist ein schnelles und probates Mittel!

>  Äquivalenz bedeutet ja das sowohl A oder B wahr  oder
> falsch sind.
>  Demnach müsste Punkt 1. einer der gesuchten sein da aus
> etwas falschem nichts wahres folgen kann ( f,f )  oder ?

Nein, nein, du sollst untersuchen, welche der Ausssagen äquivalent sind, ob also etwa [mm](A\Rightarrow B) \ \gdw \ (\neg A\Rightarrow \neg B)[/mm] gilt usw.

Mache eine WWT und trage alle der Aussagen 1.-6. jeweils in eine Spalte ein.

Stimmen zwei Spalten in jedem Eintrag, also jeder Zeile, dh. für jede Warheitswertebelegung von [mm]A[/mm] und [mm]B[/mm] überein, so sind die entsprechenden Aussagen äquivalent.

>  
> grüße
>  Micha

Gruß

schachuzipus


Bezug
                
Bezug
Äquivalenz beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:02 So 04.11.2012
Autor: Coup

Vielen Dank.
Habs nun verstanden und auch schon äquivalente gefunden.
Nur wie gehe ich mit dem [mm] \neg [/mm] ( A v [mm] \neg [/mm] B ) um ?
Vergleichbar wie Minus vor der Klammer also umkehren ( [mm] \neg [/mm] A v B )  oder erst Klammer lösen dann negieren ?


Bezug
                        
Bezug
Äquivalenz beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:13 So 04.11.2012
Autor: reverend

Hallo Coup,

>  Nur wie gehe ich mit dem [mm]\neg[/mm] ( A v [mm]\neg[/mm] B ) um ?
>  Vergleichbar wie Minus vor der Klammer also umkehren (
> [mm]\neg[/mm] A v B )  oder erst Klammer lösen dann negieren ?

Nein. Kennst Du die []De Morgan'schen Gesetze/Regeln?
Die wirst Du hier brauchen.

Grüße
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de