www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Äquivalenz dreier Normen
Äquivalenz dreier Normen < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenz dreier Normen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:05 Di 17.04.2012
Autor: Gratwanderer

Aufgabe
Seien

[mm] \parallel f \parallel_1 := |f(0)| + \parallel f' \parallel_\infty \parallel f \parallel_2 := max\{|\integral_{0}^{1}{f(t) dt}|, \parallel f' \parallel_\infty\} \parallel f \parallel_3 := \parallel f \parallel_\infty + \parallel f' \parallel_\infty [/mm]

Normen auf [mm]C^1[0,1][/mm].


Zeigen Sie, dass die Normen äquivalent sind und benutzen Sie dies, um die Vollständigkeit der zugehörigen normierten Räume zu zeigen.

Hallo,

könnte mir jemand bei dieser Aufgabe helfen?

Ich weiß, zwei Normen [mm]\parallel . \parallel_a , \parallel . \parallel_b[/mm] auf [mm]C^1[0,1][/mm] sind äquivalent, wenn zwei positive Konstanten [mm]c_1, c_2[/mm] existieren, sodass für alle [mm]f \in C^1[0,1][/mm] gilt:

[mm] c_1\parallel f \parallel_a \le \parallel x \parallel_a \le c_2 \parallel x \parallel_b [/mm]

Sei also [mm]f \in C^1[0,1][/mm], ich betrachte

[mm] \parallel f \parallel_1 = |f(0)| + \parallel f' \parallel_\infty [/mm]

habe mir nun überlegt, dass
[mm]|f(0)| \le \parallel f \parallel_\infty = \sup_{0 \le t \le 1}|f(t)|[/mm]
sein muss. Also ist

[mm] \parallel f \parallel_1 = |f(0)| + \parallel f' \parallel_\infty \le \parallel f \parallel_\infty + \parallel f' \parallel_\infty = \parallel f \parallel_3 [/mm]

damit hätte ich [mm]\parallel f \parallel_1[/mm] nach oben hin durch [mm]\parallel f \parallel_3[/mm] abgeschätzt, d.h. [mm]c_2 = 1[/mm], doch die Abschätzung nach unten fehlt mir noch.

Auch mit den Abschätzungen von [mm]\parallel f \parallel_2[/mm] haperts noch ein bißchen. Muss ich da Fallunterscheidungen machen?

Vielen Dank im Voraus!

Gruß,
Gratwanderer

        
Bezug
Äquivalenz dreier Normen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:36 Di 17.04.2012
Autor: fred97


> Seien
>  
> [mm] \parallel f \parallel_1 := |f(0)| + \parallel f' \parallel_\infty \parallel f \parallel_2 := max\{|\integral_{0}^{1}{f(t) dt}|, \parallel f' \parallel_\infty\} \parallel f \parallel_3 := \parallel f \parallel_\infty + \parallel f' \parallel_\infty [/mm]
>  
> Normen auf [mm]C^1[0,1][/mm].
>  
>
> Zeigen Sie, dass die Normen äquivalent sind und benutzen
> Sie dies, um die Vollständigkeit der zugehörigen
> normierten Räume zu zeigen.
>  Hallo,
>  
> könnte mir jemand bei dieser Aufgabe helfen?
>  
> Ich weiß, zwei Normen [mm]\parallel . \parallel_a , \parallel . \parallel_b[/mm]
> auf [mm]C^1[0,1][/mm] sind äquivalent, wenn zwei positive
> Konstanten [mm]c_1, c_2[/mm] existieren, sodass für alle [mm]f \in C^1[0,1][/mm]
> gilt:
>  
> [mm] c_1\parallel f \parallel_a \le \parallel x \parallel_a \le c_2 \parallel x \parallel_b [/mm]
>  
> Sei also [mm]f \in C^1[0,1][/mm], ich betrachte
>  
> [mm] \parallel f \parallel_1 = |f(0)| + \parallel f' \parallel_\infty [/mm]
>  
> habe mir nun überlegt, dass
> [mm]|f(0)| \le \parallel f \parallel_\infty = \sup_{0 \le t \le 1}|f(t)|[/mm]
>  
> sein muss. Also ist
>  
> [mm] \parallel f \parallel_1 = |f(0)| + \parallel f' \parallel_\infty \le \parallel f \parallel_\infty + \parallel f' \parallel_\infty = \parallel f \parallel_3 [/mm]
>  
> damit hätte ich [mm]\parallel f \parallel_1[/mm] nach oben hin
> durch [mm]\parallel f \parallel_3[/mm] abgeschätzt, d.h. [mm]c_2 = 1[/mm],
> doch die Abschätzung nach unten fehlt mir noch.


Sei x [mm] \in [/mm] [0,1]

Dann:  

                    $ |f(x)|-|f(0)|  [mm] \le [/mm] |f(x)-f(0)| =x*|f'(s)| $

mit einem s zwischen 0 und x (Mittelwertsatz ! )


Zeige damit:

             $   [mm] ||f||_{\infty} \le |f(0)|+||f'||_{\infty}$ [/mm]

FRED






>  
> Auch mit den Abschätzungen von [mm]\parallel f \parallel_2[/mm]
> haperts noch ein bißchen. Muss ich da Fallunterscheidungen
> machen?
>  
> Vielen Dank im Voraus!
>  
> Gruß,
>  Gratwanderer


Bezug
                
Bezug
Äquivalenz dreier Normen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:17 Di 17.04.2012
Autor: Gratwanderer


> Sei x [mm]\in[/mm] [0,1]
>  
> Dann:  
>
> [mm]|f(x)|-|f(0)| \le |f(x)-f(0)| =x*|f'(s)|[/mm]
>  
> mit einem s zwischen 0 und x (Mittelwertsatz ! )
>  
>
> Zeige damit:
>  
> [mm]||f||_{\infty} \le |f(0)|+||f'||_{\infty}[/mm]
>  

Ok, also laut Mittelwertsatz gilt für (mind.) ein [mm]s \in [0,1][/mm]:

[mm]|f(x)| - |f(0)| \le x*|f'(s)|[/mm]

Das ist mir klar soweit. Das heißt

[mm]|f(x)| \le |f(0)| + x*|f'(s)| \le |f(0)| + x*||f'||_\infty \le |f(0)| + ||f'||_\infty[/mm]

Da [mm]x \in [0,1][/mm].

Dann weiß ich noch, dass [mm]|f(x)| \le ||f||_\infty[/mm]. Aber das bringt mich gerade nicht weiter *grübel*

Gruß,
Gratwanderer

Bezug
                        
Bezug
Äquivalenz dreier Normen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:25 Di 17.04.2012
Autor: fred97


> > Sei x [mm]\in[/mm] [0,1]
>  >  
> > Dann:  
> >
> > [mm]|f(x)|-|f(0)| \le |f(x)-f(0)| =x*|f'(s)|[/mm]
>  >  
> > mit einem s zwischen 0 und x (Mittelwertsatz ! )
>  >  
> >
> > Zeige damit:
>  >  
> > [mm]||f||_{\infty} \le |f(0)|+||f'||_{\infty}[/mm]
>  >  
>
> Ok, also laut Mittelwertsatz gilt für (mind.) ein [mm]s \in [0,1][/mm]:
>  
> [mm]|f(x)| - |f(0)| \le x*|f'(s)|[/mm]
>  
> Das ist mir klar soweit. Das heißt
>  
> [mm]|f(x)| \le |f(0)| + x*|f'(s)| \le |f(0)| + x*||f'||_\infty \le |f(0)| + ||f'||_\infty[/mm]
>  
> Da [mm]x \in [0,1][/mm].
>  
> Dann weiß ich noch, dass [mm]|f(x)| \le ||f||_\infty[/mm]. Aber das
> bringt mich gerade nicht weiter *grübel*

Du hast es doch fast !

Wir haben also:  |f(x)| [mm] \le [/mm]  |f(0)| + [mm] ||f'||_\infty [/mm]  für jedes (!) x [mm] \in [/mm] [0,1]

Es folgt:    $ [mm] ||f||_{\infty} \le |f(0)|+||f'||_{\infty} [/mm] $


FRED


>  
> Gruß,
>  Gratwanderer


Bezug
                                
Bezug
Äquivalenz dreier Normen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 02:27 Mi 18.04.2012
Autor: Gratwanderer


> Du hast es doch fast !
>  
> Wir haben also:  |f(x)| [mm]\le[/mm]  |f(0)| + [mm]||f'||_\infty[/mm]  für
> jedes (!) x [mm]\in[/mm] [0,1]
>  
> Es folgt:    [mm]||f||_{\infty} \le |f(0)|+||f'||_{\infty}[/mm]
>

Klar, das macht natürlich Sinn :)

Habe mal weitergemacht und bin zu folgendem Ergebnis gekommen:

[mm] ||f||_2 = max\{|\integral_{0}^{1}{f(t) dt}|,||f'||_\infty\} [/mm]

nach Mittelwertsatz der Integralrechnung (für ein [mm] \xi \in [/mm] [0,1])

[mm] = max\{|f(\xi)|, ||f'||_\infty\} \le max\{||f||_\infty, ||f'||_\infty\} [/mm]

Jetzt habe ich eine Fallunterscheidung gemacht:

Fall 1: [mm] max\{||f||_\infty, ||f'||_\infty\} [/mm] = [mm] ||f||_\infty [/mm]

[mm] ||f||_2 \le ||f||_\infty \le \underbrace{|f(0)| + ||f'||_\infty}_{=||f||_1} \le \underbrace{||f||_\infty + ||f'||_\infty}_{=||f||_3} [/mm]

Fall 2: [mm] max\{||f||_\infty, ||f'||_\infty\} [/mm] = [mm] ||f'||_\infty [/mm]

[mm] ||f||_2 \le ||f'||_\infty \le \underbrace{|f(0)| + ||f'||_\infty}_{=||f||_1} \le \underbrace{||f||_\infty + ||f'||_\infty}_{=||f||_3} [/mm]

Habe ich so gezeigt, dass die drei Normen äquivalent sind?

Gruß,
Gratwanderer

Bezug
                                        
Bezug
Äquivalenz dreier Normen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 03:20 Fr 20.04.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Äquivalenz dreier Normen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:40 Fr 20.04.2012
Autor: Marcel

Hallo,

> Seien
>  
> [mm] \parallel f \parallel_1 := |f(0)| + \parallel f' \parallel_\infty \parallel f \parallel_2 := max\{|\integral_{0}^{1}{f(t) dt}|, \parallel f' \parallel_\infty\} \parallel f \parallel_3 := \parallel f \parallel_\infty + \parallel f' \parallel_\infty [/mm]
>  
> Normen auf [mm]C^1[0,1][/mm].
>  
>
> Zeigen Sie, dass die Normen äquivalent sind und benutzen
> Sie dies, um die Vollständigkeit der zugehörigen
> normierten Räume zu zeigen.
>  Hallo,
>  
> könnte mir jemand bei dieser Aufgabe helfen?
>  
> Ich weiß, zwei Normen [mm]\parallel . \parallel_a , \parallel . \parallel_b[/mm]
> auf [mm]C^1[0,1][/mm] sind äquivalent, wenn zwei positive
> Konstanten [mm]c_1, c_2[/mm] existieren, sodass für alle [mm]f \in C^1[0,1][/mm]
> gilt:
>  
> [mm] c_1\parallel f \parallel_a \le \parallel x \parallel_a \le c_2 \parallel x \parallel_b [/mm]

das gilt so nur für [mm] $x:=f\,$ [/mm] ;-)

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de