www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mengenlehre" - Äquivalenz & vollst. Induktion
Äquivalenz & vollst. Induktion < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenz & vollst. Induktion: Aufgabe1
Status: (Frage) beantwortet Status 
Datum: 20:38 Mi 24.10.2007
Autor: Kar_o

Aufgabe
Beweisen oder widerlegen Sie folgende Aussage! A,B,C und D seien dabei jeweils beliebige Mengen.
(A [mm] \setminus [/mm] B) [mm] \cup [/mm] (C [mm] \setminus [/mm] D) = (A [mm] \cup [/mm] C) [mm] \setminus [/mm] (B [mm] \setminus [/mm] D)

Hallo, ich bin unsicher im Umgang mit dem Beweis dieser Aufgabe.

Ich habe mir folgenden Lösungsansatz überlegt, vielleicht kann mir jemand sagen ob mein Anfang richitg oder falsch ist bzw weiter helfen.

also:

zu zeigen ist: (A [mm] \setminus [/mm] B) [mm] \cup [/mm] (C [mm] \setminus [/mm] D) [mm] \subseteq [/mm] (A [mm] \cup [/mm] C) [mm] \setminus [/mm] (B [mm] \setminus [/mm] D)

Induktionsvorraussetzung: x [mm] \in [/mm] (A [mm] \setminus [/mm] B) [mm] \cup [/mm] (C [mm] \setminus [/mm] D)

Induktionsbehauptung:      x [mm] \in [/mm] (A [mm] \cup [/mm] C) [mm] \setminus [/mm] (B [mm] \setminus [/mm] D)

Induktionsbeweis:  x [mm] \in [/mm] (A [mm] \setminus [/mm] B) [mm] \cup [/mm] (C [mm] \setminus [/mm] D) gdw.
                                       1.) x [mm] \in [/mm] A und x [mm] \not\in [/mm] B            
                                        oder
                                       2.) x [mm] \in [/mm] C und x [mm] \not\in [/mm] D

                                       wenn x [mm] \in [/mm] A [mm] \cup [/mm] C , dann x [mm] \not\in [/mm] B [mm] \cup [/mm] D

                                      --> (A [mm] \cup [/mm] C) \ (B [mm] \cup [/mm] D)

Ich komme irgendwie durch das [mm] \setminus [/mm] durcheinander.
Laut der Zeile wenn x [mm] \in [/mm] A [mm] \cup [/mm] C , dann x [mm] \not\in [/mm] B [mm] \cup [/mm] D
würde es ja heißen, das es nicht äquivalent ist ? Oder bin ich komplett auf dem Holzweg?

wenn ich das Rückwerts mache sehe das so aus:

z.z. ist: (A [mm] \cup [/mm] C) [mm] \setminus [/mm] (B [mm] \setminus [/mm] D) [mm] \subseteq [/mm] (A [mm] \setminus [/mm] B) [mm] \cup [/mm] (C [mm] \setminus [/mm] D)

Ind.vorr.: x [mm] \in [/mm] (A [mm] \cup [/mm] C) [mm] \setminus [/mm] (B [mm] \setminus [/mm] D)

Ind.beh.: x [mm] \in [/mm] (A [mm] \setminus [/mm] B) [mm] \cup [/mm] (C [mm] \setminus [/mm] D)

Ind.bew.: x [mm] \in [/mm] (A [mm] \cup [/mm] C) [mm] \setminus [/mm] (B [mm] \setminus [/mm] D) gdw.
                               1.)   x [mm] \in [/mm] A oder x [mm] \in [/mm] C
                                und
                               2.)   x nicht [mm] \in [/mm] von (B [mm] \setminus [/mm] D)
           das würde doch bedeuten, dass nur der übriggebliebene Teil von B bei (A [mm] \cup [/mm] C) abgezogen werden würde. D.h. es könnten Elemente enthalten bleiben die durch D bei (A [mm] \cup [/mm] C) abgezogen worden wären wenn es nicht zuvor nur von B abgezogen worden wäre. (*hui komlpizierter Satz*) Lieg ich da richtig oder bastel ich mir da gerade eine Lösung die eigentlich nicht möglich ist? Bzw wenns richtig ist wie formuliere ich es mathematisch?

danke schon mal !

LG [mm] Kar_o [/mm]

p.s. Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Äquivalenz & vollst. Induktion: Tipp
Status: (Antwort) fertig Status 
Datum: 20:51 Mi 24.10.2007
Autor: dormant

Hi!

Ich gebe zu, dass ich mir deine Lösung nicht angeschaut habe. Es ist eine gute Idee bevor man mit einem langen Induktionsbeweis anfängt, kurz zu überlegen, ob die gegebene Aussage doch nicht falsch ist. Ein einfaches Gegenbeispeil reicht in diesem Fall aus, um die Aussage zu widerlegen.

Was ist mit [mm] A=B\supset C=D\not=A? [/mm]

Gruß,
dormant

Bezug
                
Bezug
Äquivalenz & vollst. Induktion: Tipp ist mir Rästelhaft
Status: (Frage) beantwortet Status 
Datum: 22:02 Mi 24.10.2007
Autor: Kar_o

Aufgabe
$ [mm] A=B\supset C=D\not=A? [/mm] $

Diese Aussage ist mir irgendwie nicht klar?Kannst du das vielleicht genauer erklären.

Bezug
                        
Bezug
Äquivalenz & vollst. Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 23:56 Mi 24.10.2007
Autor: dormant

Hi!

> [mm]A=B\supset C=D\not=A?[/mm]

(Ich merk grad, dass oben A=C und B=D stehen sollte.)

[mm] A\supset [/mm] B [mm] \gdw B\subset [/mm] A.

Naja versuchs mit [mm] A=C:=\{1,2\} [/mm] und [mm] B=D:=\{2\}. [/mm]



Bezug
                                
Bezug
Äquivalenz & vollst. Induktion: Versteh ichs richtig?
Status: (Frage) beantwortet Status 
Datum: 00:09 Do 25.10.2007
Autor: Kar_o

$ [mm] A=C\supset B=D\not=A? [/mm] $

mit $ [mm] A=C:=\{1,2\} [/mm] $ und $ [mm] B=D:=\{2\}. [/mm] $

Das wäre dann bei
[mm] (A\setminus B)\cup(C \setminus [/mm] D) gleich {1}
und bei
[mm] (A\cup C)\setminus(B\setminus [/mm] D) gleich {1,2} ,
weil [mm] (B\setminus [/mm] D) soviel bedeutet wie (2-2)?

Hey ich glaub wenn das stimmt hab ich verstanden!

Bezug
                                        
Bezug
Äquivalenz & vollst. Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 00:22 Do 25.10.2007
Autor: leduart

Hallo
>  [mm]A=C\supset B=D\not=A?[/mm]
>  
> mit [mm]A=C:=\{1,2\}[/mm] und [mm]B=D:=\{2\}.[/mm]
>  
> Das wäre dann bei
> [mm](A\setminus B)\cup(C \setminus[/mm] D) gleich {1}
>  und bei
> [mm](A\cup C)\setminus(B\setminus[/mm] D) gleich {1,2} ,

richtig.
aber das mit 2-2 ist  sehr schlecht. denn 2-2=0 und die 0 war ja in keiner Menge.
Was du meinst: wenn man von einer menge die Gleiche Menge abzieht bleibt kein Element mehr übrig. es ist also nur noch ne Leere Menge da,geschrieben [mm] \emptyset [/mm] oder {}  das ist aber was ganz anderes als die Menge {0} die hat  ein Element mit namen 0.
Also [mm] mm](B\setminus[/mm] D)={2}\setminus{2}=\emptyset [/mm]

>  weil [mm](B\setminus[/mm] D) soviel bedeutet wie (2-2)?
>  
> Hey ich glaub wenn das stimmt hab ich verstanden!

Gut, ich denk du hasts verstanden und dich nur ungeschickt ausgedrückt.
Gruss leduart


Bezug
                                                
Bezug
Äquivalenz & vollst. Induktion: (2-2)
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:04 Do 25.10.2007
Autor: Kar_o

Ja, das hab ich wohl, doch ich meinte natürlich [mm] {2}\setminus{2}=\emtyset [/mm] .
;-)
Aber ich bin froh , das ich anscheinend doch nicht so dumm bin wie ich oft denke.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de