www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mengenlehre" - Äquivalenz von Aussagen zeigen
Äquivalenz von Aussagen zeigen < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenz von Aussagen zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:41 Di 29.07.2014
Autor: hamade9

Aufgabe
Es seien A und B Mengen. Zeige die Äquivalenz folgender Aussagen:
   a) A [mm] \subset [/mm] B
   b) A [mm] \cap [/mm] B = A
   c) A [mm] \cup [/mm] B = B
   d) A [mm] \Delta [/mm] B = B \ A

Hallo,

ich hätte einige Fragen zur oberen Aufgabe. Also soweit ich die Aufgabe verstanden habe, muss ich zeigen dass:
a [mm] \Rightarrow [/mm] b [mm] \Rightarrow [/mm] c [mm] \Rightarrow [/mm] d [mm] \Rightarrow [/mm] a
Wenn ich nun b durch a zeigen will, muss ich a als Vorraussetzung nehmen.
Vorraussetzung: A [mm] \subset [/mm] B
Zu Zeigen ist: A [mm] \cap [/mm] B = A

Wie muss ich nun weiter voran gehen. Ich hab mir das mit dem Beweis auf Widerspruch vorgestellt, jedoch komm ich da nicht weiter. Bitte um Hilfe :)


Viele Grüße,
Hamade9

        
Bezug
Äquivalenz von Aussagen zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:48 Di 29.07.2014
Autor: fred97


> Es seien A und B Mengen. Zeige die Äquivalenz folgender
> Aussagen:
>     a) A [mm]\subset[/mm] B
>     b) A [mm]\cap[/mm] B = A
>     c) A [mm]\cup[/mm] B = B
>     d) A [mm]\Delta[/mm] B = B \ A
>  Hallo,
>  
> ich hätte einige Fragen zur oberen Aufgabe. Also soweit
> ich die Aufgabe verstanden habe, muss ich zeigen dass:
>  a [mm]\Rightarrow[/mm] b [mm]\Rightarrow[/mm] c [mm]\Rightarrow[/mm] d [mm]\Rightarrow[/mm] a

Ja, so kannst Du das machen.


>  Wenn ich nun b durch a zeigen will, muss ich a als
> Vorraussetzung nehmen.
>  Vorraussetzung: A [mm]\subset[/mm] B
>  Zu Zeigen ist: A [mm]\cap[/mm] B = A
>  
> Wie muss ich nun weiter voran gehen.

Die Inklusion A [mm]\cap[/mm] B [mm] \subseteq [/mm] A dürfte klar sein.

Zeige also noch: $A [mm] \subseteq [/mm] A [mm] \cap [/mm] B$. Dazu nimm ein a [mm] \in [/mm] A und zeige: a [mm] \in [/mm]  A [mm] \cap [/mm] B.

FRED

>  



>  Ich hab mir das mit
> dem Beweis auf Widerspruch vorgestellt, jedoch komm ich da
> nicht weiter. Bitte um Hilfe :)
>  
>
> Viele Grüße,
>  Hamade9


Bezug
        
Bezug
Äquivalenz von Aussagen zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:29 Di 29.07.2014
Autor: Marcel

Hallo,

> Es seien A und B Mengen. Zeige die Äquivalenz folgender
> Aussagen:
>     a) A [mm]\subset[/mm] B
>     b) A [mm]\cap[/mm] B = A
>     c) A [mm]\cup[/mm] B = B
>     d) A [mm]\Delta[/mm] B = B \ A
>  Hallo,
>  
> ich hätte einige Fragen zur oberen Aufgabe. Also soweit
> ich die Aufgabe verstanden habe, muss ich zeigen dass:
>  a [mm]\Rightarrow[/mm] b [mm]\Rightarrow[/mm] c [mm]\Rightarrow[/mm] d [mm]\Rightarrow[/mm] a
>  Wenn ich nun b durch a zeigen will, muss ich a als
> Vorraussetzung nehmen.
>  Vorraussetzung: A [mm]\subset[/mm] B
>  Zu Zeigen ist: A [mm]\cap[/mm] B = A
>  
> Wie muss ich nun weiter voran gehen. Ich hab mir das mit
> dem Beweis auf Widerspruch vorgestellt, jedoch komm ich da
> nicht weiter. Bitte um Hilfe :)

Du kannst das gerne als Widerspruch verpacken. Es gelte $A [mm] \subset B\,.$ [/mm] Wäre
$A [mm] \cap [/mm] B [mm] \not=A\,,$ [/mm] so muss, wegen $(A [mm] \cap [/mm] B) [mm] \subset [/mm] A$ (das gilt unabhängig
von der Voraussetzung!) dann

    $A [mm] \setminus [/mm] (A [mm] \cap [/mm] B) [mm] \not=\varnothing$ [/mm]

gelten. Man kann also ein [mm] $x\,$ [/mm] finden mit

    $x [mm] \in [/mm] A$ und $x [mm] \notin [/mm] (A [mm] \cap B)\,.$ [/mm]

Lass' Dir das mal auf der Zunge zergehen unter Beachtung von $A [mm] \subset [/mm] B$).

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de