www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - Äquivalenz von Vektornormen
Äquivalenz von Vektornormen < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenz von Vektornormen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:21 So 22.01.2006
Autor: Wonko_der_Weise

Aufgabe
Satz: (Äquivalenz von Normen)
Je zwei Normen  [mm] \parallel [/mm]  * [mm] \parallel_{\alpha} [/mm] und [mm] \parallel [/mm]  * [mm] \parallel_{\beta} [/mm] auf  [mm] \IR^n [/mm] sind äquivalent, d. h. es gibt Konstanten [mm] c_1, c_2 \in \IR [/mm] so, dass gilt:
[mm] c_1 \parallel [/mm] x [mm] \parallel_\alpha \leq \parallel [/mm] x [mm] \parallel_\beta \leq c_2 \parallel [/mm] x [mm] \parallel_\beta [/mm]

Moin!

Kann bitte jemand versuchen, mir diesen Sachverhalt anschaulich klar zu machen? Ich verstehe wohl die formale Vorgehensweise des Beweises des Satzes, aber ich bin einfach nicht in der Lage, mir anschaulich klar zu machen, was mir dieser Sachverhalt sagen soll!

Vielen Dank schonmal für eure Mühe!

Adrian

        
Bezug
Äquivalenz von Vektornormen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:41 So 22.01.2006
Autor: Bastiane

Hallo!

> Satz: (Äquivalenz von Normen)
>  Je zwei Normen  [mm]\parallel[/mm]  * [mm]\parallel_{\alpha}[/mm] und
> [mm]\parallel[/mm]  * [mm]\parallel_{\beta}[/mm] auf  [mm]\IR^n[/mm] sind äquivalent,
> d. h. es gibt Konstanten [mm]c_1, c_2 \in \IR[/mm] so, dass gilt:
>  [mm]c_1 \parallel[/mm] x [mm]\parallel_\alpha \leq \parallel[/mm] x
> [mm]\parallel_\beta \leq c_2 \parallel[/mm] x [mm]\parallel_\beta[/mm]
>  Moin!
>  
> Kann bitte jemand versuchen, mir diesen Sachverhalt
> anschaulich klar zu machen? Ich verstehe wohl die formale
> Vorgehensweise des Beweises des Satzes, aber ich bin
> einfach nicht in der Lage, mir anschaulich klar zu machen,
> was mir dieser Sachverhalt sagen soll!

Mmh - eine anschauliche Erklärung würde mich auch mal interessieren... Ich kann dir dazu nur sagen, dass "äquivalent" in diesem Falle bedeutet, dass es im Endlichdimensionalen egal ist, mit welcher Norm du rechnest (bzw. beweist ;-)). Aber das wusstest du vielleicht auch schon.

Viele Grüße
Bastiane
[cap]


Bezug
        
Bezug
Äquivalenz von Vektornormen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:12 So 22.01.2006
Autor: Hanno

Hallo.

Ich stellte die Frage vor einiger Zeit hier.


Liebe Grüße,
Hanno

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de