www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Äquivalenzbeweise m. Wurzeln..
Äquivalenzbeweise m. Wurzeln.. < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenzbeweise m. Wurzeln..: Aufgabe, Beweis, Hinweise
Status: (Frage) beantwortet Status 
Datum: 11:03 Mi 03.04.2013
Autor: Kartoffelchen

Aufgabe
Zeigen Sie:
$ n,k [mm] \in [/mm] N$ so gilt: $  [mm] \wurzel[n]{k} \in [/mm] Q <=> k = [mm] m^n$ [/mm] mit$ m [mm] \in [/mm] N.$

Obige Äquivalenzgleichung gilt es zu beweisen.

Ich denke ich zeige einfach die beiden Richtungen:

"<="

Meine Vorüberlegungen:
[mm] $\wurzel[n]{k} [/mm] = [mm] k^{\frac{1}{n}})$ [/mm]
[mm] $(k^{1/n})^n [/mm] = k$

Ja, leider wars das schon.

Im Grunde sollte es doch ausreichend sein, auf beiden Seiten die "k-te Wurzel zu ziehen", dann steht ja das gewünschte da. Nur dann zu zeigen, dass es sich um ein ELement der rationalen Zahlen handelt.. ?

"=>"

Wieder nur wenige Ideen, nämlich:

da die n-te Wurzel aus k eine rationale Zahl ist, lässt sie sich darstellen:

[mm] $\wurzel[n]{k} [/mm] = p/q <=> n* [mm] (b^k) [/mm] = [mm] a^k [/mm] $ (ich potenziere beide Seiten mit dem Faktor n)



        
Bezug
Äquivalenzbeweise m. Wurzeln..: Antwort
Status: (Antwort) fertig Status 
Datum: 11:32 Mi 03.04.2013
Autor: steppenhahn

Hallo,


 > Zeigen Sie:

> [mm]n,k \in N[/mm] so gilt: [mm]\wurzel[n]{k} \in Q <=> k = m^n[/mm] mit[mm] m \in N.[/mm]

>

> Obige Äquivalenzgleichung gilt es zu beweisen.

>

> Ich denke ich zeige einfach die beiden Richtungen:

[ok]


> "<="

>

> Meine Vorüberlegungen:
> [mm]\wurzel[n]{k} = k^(\frac{1}{n}))[/mm]
> [mm](k^(1/n))^n = k[/mm]

>

> Ja, leider wars das schon.

>

> Im Grunde sollte es doch ausreichend sein, auf beiden
> Seiten die "k-te Wurzel zu ziehen", dann steht ja das
> gewünschte da. Nur dann zu zeigen, dass es sich um ein
> ELement der rationalen Zahlen handelt.. ?

Das hast du doch damit gezeigt!

Wenn du auf beiden Seiten der gegebenen Gleichung die $n$-te Wurzel ziehst, steht da:

[mm] $\sqrt[n]{k} [/mm] = m$.

Nach Voraussetzung ist [mm] $m\in\IN$, [/mm] und damit insbesondere [mm] $m\in \IQ$. [/mm] Also ist [mm] $\sqrt[n]{k}\in \IQ$. [/mm]


> "=>"

>

> Wieder nur wenige Ideen, nämlich:

>

> da die n-te Wurzel aus k eine rationale Zahl ist, lässt
> sie sich darstellen:

>

> [mm]\wurzel[n]{k} = p/q <=> n* (b^k) = a^k[/mm] (ich potenziere
> beide Seiten mit dem Faktor n)

Ich verstehe nicht, wie du auf die rechte Seite deiner Umformung kommst. Wenn du mit $n$ potenzierst, muss da doch auch "hoch n" stehen und nicht "hoch k" !
Außerdem sind plötzlich p und q verschwunden.

Dein Ansatz ist OK:

[mm] $\sqrt[n]{k} [/mm] = [mm] \frac{p}{q}$. [/mm]

(Du kannst hier oBdA. davon ausgehen, dass der Bruch p/q vollständig gekürzt ist).
Nun auf beiden Seiten hoch n:

$k = [mm] \frac{p^{n}}{q^{n}}$ [/mm]

Nun musst du noch [mm] $k\in \IN$ [/mm] benutzen, daraus kannst du folgern: $q = 1$.

Viele Grüße,
Stefan

Bezug
                
Bezug
Äquivalenzbeweise m. Wurzeln..: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:32 Do 04.04.2013
Autor: Kartoffelchen

Hallo und vielen Dank für die hilfreiche Antwort,

leider habe ich, und das tut mir sehr leid, mit zwei verschiedenen Aufgabenstellungen gearbeitet, bei denen eben die Variablen anders benannt sind, dadurch entstand das Wirrwar, das mir leider erst jetz aufgefallen ist..

Vielen Dank für dien Hinweis bzw. die Lösung, ist denkbar einfach :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de