www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Äquivalenzklassen
Äquivalenzklassen < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenzklassen: Probleme mit Aufgabenstellung
Status: (Frage) beantwortet Status 
Datum: 17:27 Fr 20.10.2006
Autor: Helmut84

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo alle zusammen!
Ich habe da eine Aufgabe, mit der ich nicht so ganz warm werde ;)
Also ich habe eine Zerlegung M1={5}, M2={3,4}, M3={1,2} der Menge M={1,2,3,4,5} in Äquivalenzklassen.
Zu prüfen ist nun, ob diese Zerlegung eine Klasseneinteilung ist und zudem ist die zugehörige Äquivalenzrealtion R auf M anzugeben...

Wie kann man denn überhaupt prüfen, ob es hier um eine Klasseneinteilung handelt?
Also so richtig nen Ansatz hab ich für beide Problemstellungen nicht... Wäre für eure Hilfe sehr dankbar :D

Mfg, Helmut

        
Bezug
Äquivalenzklassen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:52 Fr 20.10.2006
Autor: angela.h.b.


>  Ich habe da eine Aufgabe, mit der ich nicht so ganz warm
> werde ;)
>  Also ich habe eine Zerlegung [mm] M_1={5}, M_2={3,4}, M_3={1,2} [/mm]
> der Menge M={1,2,3,4,5} in Äquivalenzklassen.
>  Zu prüfen ist nun, ob diese Zerlegung eine
> Klasseneinteilung ist und zudem ist die zugehörige
> Äquivalenzrealtion R auf M anzugeben...
>  
> Wie kann man denn überhaupt prüfen, ob es hier um eine
> Klasseneinteilung handelt?

Hallo,

wir haben eine Menge M und Teilmengen [mm] M_1, M_2, M_3. [/mm]

Es gilt
1.) M= [mm] M_1 \cup M_2 \cup M_3 [/mm]
2.) [mm] M_i \not= \emptyset [/mm] für i=1,2,3
3.) Die [mm] M_i [/mm] sind paarweise elementfremd.

Also ist P={ [mm] M_1, M_2, M_3 [/mm] } eine Partition von M, und ich nehme sehr stark an, daß das bei Euch "Klasseneinteilung" genannt wird. Es paßt jedenfalls...

Nun gibt es einen Satz, welcher sagt, daß jede Partition [mm] \{X_i\}_{{i \in I}} [/mm] einer Menge X eine Äquivalenzrelation R auf dieser Menge induziert vermöge
R:= { (x,y) [mm] \in [/mm] X x X : für wenigstens ein i [mm] \in [/mm] I ist x,y [mm] \in X_i [/mm] }.

Ich nehme an, daß das in Deiner Vorlesung oder als "kleine Übung" gezeigt wurde.

Du kriegst also Deine Aquivalenzrelation, indem Du Dir alle Paare zusammenstellst, die jeweils aus Elementen von [mm] M_1, M_2, M_3 [/mm] basteln kannst. Diese steckst Du in eine Menge und hast Deine induzierte Äquivalenzrelation R.

Paare aus [mm] M_2: [/mm] (3,3), (3,4), (4,3), (4,4)
Paare aus [mm] M_1: [/mm]  ...
Paare aus [mm] M_3: [/mm] ...

R:= { (3,3), (3,4), (4,3), (4,4), ... } ist die gesuchte induzierte Äquivalenzrelation.

Gruß v, Angela



Bezug
                
Bezug
Äquivalenzklassen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:55 Sa 21.10.2006
Autor: Helmut84

Hey super, vielen Dank!
Hab's begriffen denke ich :)

Nur eine kleine Frage hätte ich noch: warum i [mm] \in [/mm] I? Und: ist 5 [mm] \in [/mm] M1 x M1 (5,5)?

Bezug
                        
Bezug
Äquivalenzklassen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:28 Sa 21.10.2006
Autor: angela.h.b.


> Nur eine kleine Frage hätte ich noch: warum i [mm]\in[/mm] I?

Ach, das hatte ich nicht so genau dazugeschrieben: I soll irgendeine Indexmenge sein.

wenn z.B. I={a,b,c,d}, dann ist

$ [mm] \{X_i\}_{{i \in I}} [/mm] $  [mm] =\{ X_a, X_b, X_c, X_d\} [/mm]


> ist 5 [mm]\in[/mm] M1 x M1 (5,5)?

Hä???

5 [mm] \in M_1= \{5\}. [/mm]

(5,5) [mm] \in M_1 [/mm] x [mm] M_1= \{5\} [/mm] x [mm] \{5\} [/mm]

Wahrscheinlich meintest Du das...

R:= { (3,3), (3,4), (4,3), (4,4), (1,1), (1,2), (2,1), (2,2), (5,5) } ist die gesuchte induzierte Äquivalenzrelation.

Gruß v. Angela


Bezug
                                
Bezug
Äquivalenzklassen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:18 Sa 21.10.2006
Autor: Helmut84

Ja klar... Mit der Indexmenge hatte ich wohl leicht ein Brett vorm Kopf... :)
Ja genau das war's, wass ich mit der 5 meinte!

Vielen vielen Dank! :D

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de