www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Logik" - Äquivalenzrelation
Äquivalenzrelation < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenzrelation: Korrektur,Tipp
Status: (Frage) beantwortet Status 
Datum: 21:35 Di 20.02.2007
Autor: inf-freak

Aufgabe
Gegeben sei die Menge [mm] \IR *=\IR [/mm] \ { 0 } und die Relation R [mm] \subseteq \IR [/mm] * [mm] \times \IR [/mm] * mit xRy : [mm] \gdw [/mm] x=y [mm] \vee [/mm] x*y=1
Zeigen sie, dass R Äquivalenzrelation ist.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Das ist eine Übungsaufgabe. Zu zeigen ist Reflexivität, Transitivität und Symmetrie... also haben wir angefangen:

Reflexivität:

[mm] \forall [/mm] x: (xRx) [mm] \to [/mm] x=x folgt aus der definition der Relation oder liege ich falsch und ist die Reflexivität damit auch schon bewiesen?

Zur symmetrie und transitivität habe ich verschiedenes versucht...

Transitivität:

[mm] \forall [/mm] x,y,z: (xRy [mm] \wedge [/mm] yRz) [mm] \to [/mm] xRz auf die relation angewand...

((x*y=1) [mm] \wedge [/mm] (y*z=1)) [mm] \to [/mm] x*z=1  damit dies erfüllt ist hab ich mir folgendes überlegt...

((y=1/x) [mm] \wedge [/mm] (1/x*z=1)) [mm] \to [/mm] x*z=1 und weiter dann...

((y=1/x) [mm] \wedge [/mm] (1/x=1/z)) [mm] \to [/mm] x*z=1 ...

Bekomme irgendwie nur raus das x=y oder x=y=1 sein muss für die symmetrie und für die transitivität y=1/x=1/z und x=z=1 sein muss... Denke aber das irgendwas vergessen habe oder ich einen entscheidenen Fehler mache da ich nicht weiß wie genau ich herrangehen soll um diesen Beweis zu schaffen... Ich bitte um einen Tipp oder korrektur oder Lösungsanfang, wo ich dann sehe wie genau ich an den Beweis herran gehen kann.

Danke im vorraus...

MfG inf-freak

        
Bezug
Äquivalenzrelation: Antwort
Status: (Antwort) fertig Status 
Datum: 22:03 Di 20.02.2007
Autor: schachuzipus

Hallo inf-freak

> Gegeben sei die Menge [mm]\IR *=\IR[/mm] \ { 0 } und die Relation R
> [mm]\subseteq \IR[/mm] * [mm]\times \IR[/mm] * mit xRy : [mm]\gdw[/mm] x=y [mm]\vee[/mm] x*y=1
>  Zeigen sie, dass R Äquivalenzrelation ist.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Das ist eine Übungsaufgabe. Zu zeigen ist Reflexivität,
> Transitivität und Symmetrie... also haben wir angefangen:
>  
> Reflexivität:
>  
> [mm]\forall[/mm] x: (xRx) [mm]\to[/mm] x=x folgt aus der definition der
> Relation oder liege ich falsch und ist die Reflexivität
> damit auch schon bewiesen?

Ja, das folgt direkt aus der Definition von R, ich würde nur umgekehrt argumentieren: x=x [mm] \Rightarrow [/mm] xRx fertig ;-)

>  
> Zur symmetrie und transitivität habe ich verschiedenes
> versucht...
>  
> Transitivität:
>  
> [mm]\forall[/mm] x,y,z: (xRy [mm]\wedge[/mm] yRz) [mm]\to[/mm] xRz auf die relation
> angewand...
>  
> ((x*y=1) [mm]\wedge[/mm] (y*z=1)) [mm]\to[/mm] x*z=1  damit dies erfüllt ist
> hab ich mir folgendes überlegt...
>  
> ((y=1/x) [mm]\wedge[/mm] (1/x*z=1)) [mm]\to[/mm] x*z=1 und weiter dann...
>  
> ((y=1/x) [mm]\wedge[/mm] (1/x=1/z)) [mm]\to[/mm] x*z=1 ...
>  
> Bekomme irgendwie nur raus das x=y oder x=y=1 sein muss für
> die symmetrie und für die transitivität y=1/x=1/z und x=z=1
> sein muss... Denke aber das irgendwas vergessen habe oder
> ich einen entscheidenen Fehler mache da ich nicht weiß wie
> genau ich herrangehen soll um diesen Beweis zu schaffen...
> Ich bitte um einen Tipp oder korrektur oder Lösungsanfang,
> wo ich dann sehe wie genau ich an den Beweis herran gehen
> kann.


Transitivität: Seien xRy [mm] \wedge [/mm] yRz [mm] \Leftrightarrow (xy=1\vee x=y)\wedge (yz=1\vee [/mm] y=z)

Nun würde ich eine Fallunterscheidung machen (wobei der einzig "schwierige" Fall folgender ist:)

1.Fall: [mm] xy=1\wedge [/mm] yz=1 [mm] \Rightarrow x(yz)=x\cdot{}1=x [/mm] und andererseits [mm] x(yz)=(xy)z=1\cdot{}z=z [/mm] also xRz , da x(yz)Rx(yz) wegen der Reflexivität

2.Fall: [mm] xy=1\wedge [/mm] y=z trivial

3.Fall: [mm] x=y\wedge [/mm] yz=1 ebenso

4.Fall: [mm] x=y\wedge [/mm] y=z auch ;-)

Die Symmetrie folgt auch aufgrund der Def von R


Gruß

schachuzipus

> Danke im vorraus...
>  
> MfG inf-freak


Bezug
                
Bezug
Äquivalenzrelation: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 23:33 Di 20.02.2007
Autor: inf-freak

hi schachuzipus

> Transitivität: Seien xRy [mm]\wedge[/mm] yRz [mm]\Leftrightarrow (xy=1\vee x=y)\wedge (yz=1\vee[/mm]
> y=z)
>  
> Nun würde ich eine Fallunterscheidung machen (wobei der
> einzig "schwierige" Fall folgender ist:)
>  
> 1.Fall: [mm]xy=1\wedge[/mm] yz=1 [mm]\Rightarrow x(yz)=x\cdot{}1=x[/mm] und
> andererseits [mm]x(yz)=(xy)z=1\cdot{}z=z[/mm] also xRz , da
> x(yz)Rx(yz) wegen der Reflexivität
>  
> 2.Fall: [mm]xy=1\wedge[/mm] y=z trivial
>  
> 3.Fall: [mm]x=y\wedge[/mm] yz=1 ebenso
>  
> 4.Fall: [mm]x=y\wedge[/mm] y=z auch ;-)
>  
> Die Symmetrie folgt auch aufgrund der Def von R
>  
>
> Gruß
>  
> schachuzipus

Ich bedanke mich erstmal dick bei dir... du hast mir mal richtig weiter geholfen...

Fall 1 erscheinte mir zuerst garnicht überschaubar, wurde dann aber verständlich nach mehrmaligen überlegen...

zur Symmetrie:

xRy [mm] \to [/mm] yRx [mm] \gdw [/mm] (x=y [mm] \vee [/mm] xy=1)

x=y [mm] \Rightarrow [/mm] xRy
y=x [mm] \Rightarrow [/mm] yRx
x=1/y [mm] \Rightarrow [/mm] xRy
y=1/x [mm] \Rightarrow [/mm] yRx

ergibt sich halt aus der relation das x und y in relation stehen...

Danke nochmal, mir ist ein Licht aufgegangen ;P

Bezug
                        
Bezug
Äquivalenzrelation: Antwort
Status: (Antwort) fertig Status 
Datum: 23:38 Di 20.02.2007
Autor: schachuzipus

Hi

na prima, so soll es sein ;-)


Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de