www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Äquivalenzrelation
Äquivalenzrelation < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenzrelation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:02 So 15.04.2007
Autor: CPH

Aufgabe
Sei R ein kommutativer Ring, und sei S ein Teilmenge von R, so dass :
a) 1 [mm] \in [/mm] S,
b) xy [mm] \in [/mm] S, für alle x, y  [mm] \in [/mm] S.
Wir definieren eine Relation  auf R × S durch : Für alle (r1, s1), (r2, s2) [mm] \in [/mm] R × S,
(r1, s1) [mm] \sim [/mm] (r2, s2) , es existiert s [mm] \in [/mm] S mit ss2r1 = ss1r2.
Zeigen Sie, dass [mm] \sim [/mm] eine Äquivalenzrelation ist.

Hallo, ich habe auch hier keine Ahnung wie man so etwas zeigt,
könnt ihr mir erklären was ich zun muss?

Vielen Dank für eure Hilfe im Voraus

MfG

Christoph

        
Bezug
Äquivalenzrelation: Antwort
Status: (Antwort) fertig Status 
Datum: 16:43 So 15.04.2007
Autor: Micha

Hallo Christoph!

> Sei R ein kommutativer Ring, und sei S ein Teilmenge von R,
> so dass :
>  a) 1 [mm]\in[/mm] S,
>  b) xy [mm]\in[/mm] S, für alle x, y  [mm]\in[/mm] S.
>  Wir definieren eine Relation  auf R × S durch : Für alle
> (r1, s1), (r2, s2) [mm]\in[/mm] R × S,
>  (r1, s1) [mm]\sim[/mm] (r2, s2) , es existiert s [mm]\in[/mm] S mit ss2r1 =
> ss1r2.
>  Zeigen Sie, dass [mm]\sim[/mm] eine Äquivalenzrelation ist.
>  Hallo, ich habe auch hier keine Ahnung wie man so etwas
> zeigt,
>  könnt ihr mir erklären was ich zun muss?
>  

Also zunächst einmal sollte man sich überlegen, womit man es zu tun hat. Die Äquivalenzrelaztion beschreibt die Brüche im Ring R mit Nennern aus
$S [mm] \subset [/mm] R$. Die Relation ist erfüllt, wenn ein Punkt aus $R [mm] \times [/mm] S$ durch Brucherweiterung entsteht:

z.B. ist ja $(1,2) [mm] \sim [/mm] (2,4)$ bzw. [mm] $\frac{1}{2} \sim \frac{2}{4}$. [/mm]

Kommen wir nun zu deiner Frage:

Für den Beweis musst du checken, ob die Relation reflexiv, transitiv und symmetrisch ist.

Reflexiv, ist sie wenn jedes Element zu sich selbst in Relation steht, das ist hier einfach.

Transitiv ist sie, wenn aus [mm] $a\sim [/mm] b $ uns [mm] $\b \sim [/mm] c$ folgt, das [mm] $a\sim [/mm] c$. Wie sieht es dann hier aus? Was ist zu zeigen?

Zuletzt ist noch die symmetrie zu zeigen, nämlich wenn du hast $a [mm] \sim [/mm] b$ so soll folgen $b [mm] \sim [/mm] a$. Gilt das hier?

Wie schaut das alles genau aufgeschrieben aus?

Gruß Micha ;-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de