www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Äquivalenzrelation
Äquivalenzrelation < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenzrelation: Frage
Status: (Frage) beantwortet Status 
Datum: 13:12 Di 01.02.2005
Autor: larlib

Hallo,
ich hab hier eine Aufgabe, die da heißt:

M={0,1,2,3,4}
R={(0,0),(1,1),(2,2),(3,3),(4,4),(0,2),(2,0),(1,3),(3,1)}

Prüfe, ob R eine Äquivalenzrelation ist.
reflexiv: (0,0),(1,1),(2,2),(3,3),(4,4)......OK
symmetrisch: (0,2),(2,0),(1,3),(3,1)......OK
transitiv:(a,b)~(b,c)? Das ist mir unklar?

Heißt doch: (0,2),(2,0) (b,b)=(2,2) und wenn das gilt, muss auch (a,c) also(0,0) in der Relation drin sein.(0,0) ist drin, also transitiv?
Noch ne Frage:
Ab wann ist denn eine Relation transitiv?
Schon, wenn man nachgewiesen hat, dass es für 2 Zahlenpaare (wie oben) gilt.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Äquivalenzrelation: transitiv Korrigiert
Status: (Antwort) fertig Status 
Datum: 14:02 Di 01.02.2005
Autor: mathemaduenn

Hallo larlib,
Transitivität:
[mm](a,b)\in R \wedge (b,c)\in R \Rightarrow (a,c)\in R[/mm]
Das muß für alle möglichen Kombinationen gelten.
[mm](0,2)\in R \wedge (2,0)\in R \Rightarrow (0,0)\in R[/mm] O.K.
[mm](2,0)\in R \wedge (0,2)\in R \Rightarrow (2,2)\in R[/mm] O.K.
usw.
Alles klar?
gruß
mathemaduenn



Bezug
                
Bezug
Äquivalenzrelation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:28 Di 01.02.2005
Autor: larlib

Ok, verstanden!
Dann zur Kontrolle noch eine Aufgabe:
Sei A={1,2,3,4}
a) R1={(1,1),(2,2),(3,3),(4,4),(2,3),(3,2),(2,4),(4,2),(3,4),(4,3)}
b) R1={(1,1),(2,2),(3,3),(4,4),(1,2),(1,3),(1,4),(2,1),(3,1),(4,1)}

Prüfe ob folgende Relationen Äquivalenzrelationen sind!

zu a)
reflexiv:(1,1),(2,2),(3,3),(4,4)...OK
symmetrisch:(2,3),(3,2),(2,4),(4,2),(3,4),(4,3)...OK
transitiv:
(2,3),(3,2)=(3,2)
(2,4),(4,2)=(4,2)
(3,4),(4,3)=(4,3)...OK
Lösung a) Äquivalenzrelation

zu b)
reflexiv:(1,1),(2,2),(3,3),(4,4)...OK
symmetrisch:(1,2),(1,3),(1,4),(2,1),(3,1),(4,1)...OK
transitiv:
(1,2),(2,1)=(1,1)
(1,3),(3,1)=(1,1)
(1,4),(4,1)=(1,1)...OK , bis dahin
Lösung b) Äquivalenzrelation...falsch, Fehler gefunden!
Ich muss mir ja alle Paare angucken, wo 2te Zahl eines Tupels= 1te Zahl eine Tupels ist, also
(4,1),(1,3)=(4,3) kein Element vonR2
Lösung b) keine Äquivalenzrelation....Korrekt?

man man, da muss man ja höllisch aufpassen.
Falls diese Aufgabe richtig ist, danke ich dir schon einmal, mathemaduenn

Bezug
                        
Bezug
Äquivalenzrelation: Antwort
Status: (Antwort) fertig Status 
Datum: 15:57 Di 01.02.2005
Autor: mathemaduenn

Hallo larlib,
> zu a)
>  reflexiv:(1,1),(2,2),(3,3),(4,4)...OK
>  symmetrisch:(2,3),(3,2),(2,4),(4,2),(3,4),(4,3)...OK
>  transitiv:
>  (2,3),(3,2)=(3,2)
>  (2,4),(4,2)=(4,2)
>  (3,4),(4,3)=(4,3)...OK
>  Lösung a) Äquivalenzrelation

[kopfkratz3]  
[mm](2,3) \in R \wedge (3,2) \in R \Rightarrow (2,2) \in R[/mm]
müsste es heißen. Und theoretisch mußt du alle möglichen Paare bilden. Also z.B. auch [mm](3,4) \in R \wedge (4,2) \in R \Rightarrow (3,2) \in R[/mm]

> zu b)
>  reflexiv:(1,1),(2,2),(3,3),(4,4)...OK
>  symmetrisch:(1,2),(1,3),(1,4),(2,1),(3,1),(4,1)...OK
>  transitiv:
>  (1,2),(2,1)=(1,1)
>  (1,3),(3,1)=(1,1)
>  (1,4),(4,1)=(1,1)...OK , bis dahin
>  Lösung b) Äquivalenzrelation...falsch, Fehler gefunden!
>  Ich muss mir ja alle Paare angucken, wo 2te Zahl eines
> Tupels= 1te Zahl eine Tupels ist, also
>  (4,1),(1,3)=(4,3) kein Element vonR2
>  Lösung b) keine Äquivalenzrelation....Korrekt?

Genau. Ein Gegenbsp. reicht.
gruß
mathemaduenn

Bezug
                                
Bezug
Äquivalenzrelation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:10 Di 01.02.2005
Autor: larlib

UUps, glaube hab mich gerade verklickt!!!

>  Genau. Ein Gegenbsp. reicht.

Dachte doppelt hält besser,gell
Scheint jetzt klar zu sein.

Danke schön
hast mir sehr geholfen!!!




Bezug
                
Bezug
Äquivalenzrelation: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 14:13 Mi 02.02.2005
Autor: larlib

Hallo mathemaduenn
>  Transitivität:
>  [mm](a,b)\in R \wedge (b,c)\in R \Rightarrow (b,c)\in R[/mm]

Muss es hier nicht heißen:
( a , b )  [mm] \in [/mm] R  [mm] \wedge [/mm] ( b , c ) [mm] \in [/mm] R  [mm] \Rightarrow [/mm] ( a , c ) [mm] \in [/mm] R

Gruß
larlib



Bezug
                        
Bezug
Äquivalenzrelation: Antwort
Status: (Antwort) fertig Status 
Datum: 14:30 Mi 02.02.2005
Autor: Bastiane

Hallo nochmal! ;-)
> Hallo mathemaduenn
>  >  Transitivität:
>  >  [mm](a,b)\in R \wedge (b,c)\in R \Rightarrow (b,c)\in R[/mm]
>  
>
> Muss es hier nicht heißen:
>  ( a , b )  [mm]\in[/mm] R  [mm]\wedge[/mm] ( b , c ) [mm]\in[/mm] R  [mm]\Rightarrow[/mm] ( a
> , c ) [mm]\in[/mm] R
>  
> Gruß
>  larlib

Ja, da hast du Recht! [ok] Da hat sich mathemaduenn wohl vertippt - kann ja mal passieren. Aber anders würde es ja keinen Sinn machen. :-)

Viele Grüße
Bastiane
[cap]


Bezug
        
Bezug
Äquivalenzrelation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:33 Do 03.02.2005
Autor: larlib

An alle noch mal einen schönen Dank!

Gruß
larlib

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de