www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Logik" - Äquivalenzrelation
Äquivalenzrelation < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenzrelation: Übung IV
Status: (Frage) beantwortet Status 
Datum: 21:06 Do 06.11.2008
Autor: sethonator

Aufgabe
Wir betrachten die folgende Realtion auf der Menge [mm] \IN [/mm] x [mm] \IN [/mm] :
( [mm] n_{1} [/mm] , [mm] n_{2} [/mm] ) ~  ( [mm] m_{1} [/mm] , [mm] m_{2} [/mm] ) [mm] \gdw n_{1} [/mm] + [mm] m_{2} [/mm] = [mm] n_{2} [/mm] + [mm] m_{1} [/mm]

a) Zeigen Sie, dass ~ eine Äquivalenzrelation ist.
b) Enthält jede Äquivalenzklasse ein Element der Art (n,1)?
c) Konstruieren Sie eine bijektive Abbildung zwischen [mm] \IZ [/mm] und der Menge der Äquivalenzklassen.

Sorry, aber da habe ich überhaupt keinen Ansatz.

Ich muss ja sicherlich wieder auf Reflexivität, Symmetrie und Transitivität prüfen. Aber wie?

bei b und c finde ich keinen Ansatz...

HILFE...

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Äquivalenzrelation: Antwort
Status: (Antwort) fertig Status 
Datum: 23:03 Do 06.11.2008
Autor: angela.h.b.


> Wir betrachten die folgende Realtion auf der Menge [mm]\IN[/mm] x
> [mm]\IN[/mm] :
>  ( [mm]n_{1}[/mm] , [mm]n_{2}[/mm] ) ~  ( [mm]m_{1}[/mm] , [mm]m_{2}[/mm] ) [mm]\gdw n_{1}[/mm] + [mm]m_{2}[/mm]
> = [mm]n_{2}[/mm] + [mm]m_{1}[/mm]
>  
> a) Zeigen Sie, dass ~ eine Äquivalenzrelation ist.
>  b) Enthält jede Äquivalenzklasse ein Element der Art
> (n,1)?
>  c) Konstruieren Sie eine bijektive Abbildung zwischen [mm]\IZ[/mm]
> und der Menge der Äquivalenzklassen.
>  
> Sorry, aber da habe ich überhaupt keinen Ansatz.
>  
> Ich muss ja sicherlich wieder auf Reflexivität, Symmetrie
> und Transitivität prüfen. Aber wie?

Hallo,

Du mußt bedenken, daß die Elemente heir Zahlenpaare sind

Für die reflexivität mußt Du also schauen, ob

[mm] (n_1, n_2)\sim (n_1, n_2) [/mm] gilt.

Auch bei Symmetrie und Transitivität hast Du es mit Zahlenpaaren zu tun.

>  
> bei b und c finde ich keinen Ansatz...

Die kommen sinnigerweise erst dran, wenn das andere vestanden ist.

Gruß v. Angela

>  
> HILFE...
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Äquivalenzrelation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:28 Do 06.11.2008
Autor: sethonator

Gut, also prüfe ich auf Reflexivität.

Es ist zu prüfen, ob für alle n1, n2 [mm] \in \IN [/mm] auch n1,n2Rn1,n2 gilt.

Gilt für n1,n2 [mm] \in \IN, [/mm] dass n1+n2=n2+n1?

Das stimmt, da n1+n2=n2+n1 für jedes n1,n2 [mm] \in \IN [/mm] gilt.

Symmetrie:

Wenn n1,n2,m1,m2 [mm] \in \IN [/mm] so sind, dass n1,n2Rm1,m2. Gilt dann auch m1,m2Rn1,n2?

n1+m2=n2+m1

gleich zu

m1+n2=m2+n1

Daher symmetrisch

Transitivität:

Aber wie stelle ich das jetzt da?

Bezug
                        
Bezug
Äquivalenzrelation: Antwort
Status: (Antwort) fertig Status 
Datum: 02:57 Fr 07.11.2008
Autor: Marcel

Hallo,

> Gut, also prüfe ich auf Reflexivität.
>  
> Es ist zu prüfen, ob für alle n1, n2 [mm]\in \IN[/mm] auch
> [mm] $\blue{(}n1,n2\blue{)}R\blue{(}n1,n2\blue{)}$ [/mm] gilt.

Ist Dir klar, warum ich da Klammern gesetzt habe? Wörtlich ist hier eigentlich die Frage:
Gilt für alle $n [mm] \in \IN \times \IN$ [/mm] auch $nRn$? Und $n [mm] \in \IN \times \IN$ [/mm] gilt genau dann, wenn [mm] $n=(n_1,n_2)$ [/mm] mit [mm] $n_1,n_2 \in \IN\,.$ [/mm]
  

> Gilt für n1,n2 [mm]\in \IN,[/mm] dass n1+n2=n2+n1?
>  
> Das stimmt, da n1+n2=n2+n1 für jedes alle n1,n2 [mm]\in \IN[/mm] gilt. (Oder Du müßtest schreiben: Für jedes [mm] $(n_1,n_2) \in \IN \times \IN\,.$) [/mm]

Aber bis auf die Wortwahl ist das [ok]
  

> Symmetrie:
>  
> Wenn n1,n2,m1,m2 [mm]\in \IN[/mm] so sind, dass [mm] $\blue{(}n1,n2\blue{)}R\blue{(}m1,m2\blue{)}$. [/mm] Gilt
> dann auch [mm] $\blue{(}m1,m2\blue{)}R\blue{(}n1,n2\blue{)}$? [/mm]
>  
> n1+m2=n2+m1
>  
> gleich zu liefert (hier geht auch: ist äquivalent zu)
>  
> m1+n2=m2+n1

>

>  
> Daher symmetrisch

Naja, hier könnte man schreiben:
m1+n2=m2+n1 [mm] $\underset{\text{nach Definition von }R}{\Longrightarrow}$ [/mm] $(m1,m2)R(n1,n2)$

Aber im Prinzip war das auch [ok]
  

> Transitivität:

Du hast doch nun folgendes zu tun:
Es ist zu prüfen, ob für alle $m,n,p [mm] \in \IN \times \IN$ [/mm] gilt:
Wenn $mRn$ und [mm] $nRp\,$: [/mm] Gilt dann auch schon $mRp$?

Also:
Gilt für alle [mm] $m_1,m_2,n_1,n_2,p_1,p_2 \in \IN$: [/mm]
Wenn [mm] $(m_1,m_2)R(n_1,n_2)$ [/mm] und [mm] $(n_1,n_2)R(p_1,p_2)$ [/mm] gilt: Gilt dann auch schon [mm] $(m_1,m_2)R(p_1,p_2)\,.$ [/mm]

Also: Vorausgesetzt wird nun, dass folgende zwei Gleichungen gelten:

(I) [mm] $m_{1}+n_{2} =m_{2} [/mm] +n _{1} $

(II) [mm] $n_{1}+p_{2} =n_{2} [/mm] +p _{1} $

Du Frage ist nun: Kann man aus (I) und (II) schon folgern, dass auch

[mm] $$(\star)\;\;\;m_{1}+p_{2} =m_{2} [/mm] +p [mm] _{1}\; [/mm] ?$$

(Tipp: Z.B. kann man (I) und (II) mal addieren.)

Gruß,
Marcel

Bezug
        
Bezug
Äquivalenzrelation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:12 Do 06.11.2008
Autor: sethonator

Hat denn auch hier keiner eine Idee?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de