www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Äquivalenzrelation
Äquivalenzrelation < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenzrelation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:22 Mi 27.01.2010
Autor: NightmareVirus

Aufgabe
1.)$R := M [mm] \times [/mm] M$ ist eine Äquivalenzrelation auf $M$. [mm] $\emptyset \subset [/mm] M [mm] \times [/mm] M$ ist symmetrisch, transitiv, aber nicht reflexiv .


2.)Sei $G : M [mm] \to [/mm] N$ eine Abbildung ($G$ wie Gesichtspunkt). Dann ist [mm] $\sim_G \subseteq [/mm] M [mm] \times [/mm] M$ definiert durch $m [mm] \sim_G [/mm] m'$ genau dann, wenn $G(m) = G(m'), eine Äquivalenzrelation.
Die Äquivalenzrelation [mm] $\sim_G$ [/mm] heisst Bildgleichheit bezüglich G.
(z.b. $G: [mm] \mathbb{R}^2 \to \mathbb{R} [/mm] : (x,y) [mm] \mapsto [/mm] x-y$
oder $G: [mm] \mathbb{R}^2 \to \mathbb{R} [/mm] : (x,y) [mm] \mapsto x^2+y^2$) [/mm]


3.) Sei $M$ eine Menge und $f: M [mm] \to [/mm] M$ eine Abbildung von $M$ in sich. [mm] $\sim$ [/mm] ist eine Äquivalenzrelation auf $M$ definiert durch $m [mm] \sim [/mm] n$ für $m,n [mm] \in [/mm] M$, falls natürlichen Zahlen $a,b [mm] \in \mathbb{N}$ [/mm] existieren mit [mm] $f^a(m) [/mm] = [mm] f^b(n)$. [/mm]
Diese Äquivalenzrelation teilt die Menge $M$ in Teilmengen auf, die durch $f$ wieder in sich abgebildet werden, man könnte von Komponenten der Abbildung sprechen.

Hi,
obige 3 Aussagen bereiten mir Kopfzerbrechen. Ich lerne gerade für meine Zwischenprüfung LAI / LA II und arbeite daher das gehasste Skript durch.
(ich sage nur: RWTH Professor P.) ;)

Klar ist: Eine Relation $R$ heisst Äquivalenzrelation wenn sie reflexiv, symmetrisch und transitiv ist.

zu 1.) warum soll das kreuzprodukt nicht reflexiv sein? und warum, sollte es tatsächlich nicht reflexiv sein, liegt dann eine Äquivalenzrelation vor?

zu 2.) Kann das bitte jemand anschaulich erklären? Was soll die Bildgleichheit bzgl. G sein?

zu 3.) ???

        
Bezug
Äquivalenzrelation: Antwort
Status: (Antwort) fertig Status 
Datum: 13:45 Mi 27.01.2010
Autor: statler

Hallo!

> 1.)[mm]R := M \times M[/mm] ist eine Äquivalenzrelation auf [mm]M[/mm].
> [mm]\emptyset \subset M \times M[/mm] ist symmetrisch, transitiv,
> aber nicht reflexiv .
>  
>
> 2.)Sei $G : M [mm]\to[/mm] N$ eine Abbildung ($G$ wie
> Gesichtspunkt). Dann ist [mm]$\sim_G \subseteq[/mm] M [mm]\times[/mm] M$
> definiert durch $m [mm]\sim_G[/mm] m'$ genau dann, wenn $G(m) =
> G(m'), eine Äquivalenzrelation.
>  Die Äquivalenzrelation [mm]\sim_G[/mm] heisst Bildgleichheit
> bezüglich G.
>  (z.b. [mm]G: \mathbb{R}^2 \to \mathbb{R} : (x,y) \mapsto x-y[/mm]
>  
> oder [mm]G: \mathbb{R}^2 \to \mathbb{R} : (x,y) \mapsto x^2+y^2[/mm])
>  
>
> 3.) Sei [mm]M[/mm] eine Menge und [mm]f: M \to M[/mm] eine Abbildung von [mm]M[/mm] in
> sich. [mm]\sim[/mm] ist eine Äquivalenzrelation auf [mm]M[/mm] definiert
> durch [mm]m \sim n[/mm] für [mm]m,n \in M[/mm], falls natürlichen Zahlen
> [mm]a,b \in \mathbb{N}[/mm] existieren mit [mm]f^a(m) = f^b(n)[/mm].
>  Diese
> Äquivalenzrelation teilt die Menge [mm]M[/mm] in Teilmengen auf,
> die durch [mm]f[/mm] wieder in sich abgebildet werden, man könnte
> von Komponenten der Abbildung sprechen.

>  obige 3 Aussagen bereiten mir Kopfzerbrechen. Ich lerne
> gerade für meine Zwischenprüfung LAI / LA II und arbeite
> daher das gehasste Skript durch.
>  (ich sage nur: RWTH Professor P.) ;)

Der Mensch soll nicht hassen, sondern lieben.

> Klar ist: Eine Relation [mm]R[/mm] heisst Äquivalenzrelation wenn
> sie reflexiv, symmetrisch und transitiv ist.
>  
> zu 1.) warum soll das kreuzprodukt nicht reflexiv sein? und
> warum, sollte es tatsächlich nicht reflexiv sein, liegt
> dann eine Äquivalenzrelation vor?

Wie heißt es bei Loriot? Sie müssen schon gaaaanz genau hinschauen. Das Kreuzprodukt soll eine Ä-Rel., also auch reflexiv, sein. Die leere Menge ist nicht reflexiv! Es sei denn, M ist leer.

> zu 2.) Kann das bitte jemand anschaulich erklären? Was
> soll die Bildgleichheit bzgl. G sein?

In der Urbildmenge sollen 2 Elemente äquivalent sein, wenn sie das gleiche Bild in N haben. Vielleicht sollte man besser sagen: dasselbe Bild.

> zu 3.) ???

Daran kann man noch mal alles üben, was zu den Ä-Relationen gehört, also überlasse ich die Ausführung des Beweises von r, s und t, die Beschreibung dieser ominösen Mengen (Was bietet sich da an?) und den Nachweis, daß sie auf sich abgebildet werden, vorerst dir. Irgend ein Ansatz sollte schon kommen.

Gruß aus HH-Harburg
Dieter


Bezug
        
Bezug
Äquivalenzrelation: Antwort
Status: (Antwort) fertig Status 
Datum: 03:06 Mo 08.02.2010
Autor: felixf

Moin!

Dieter hat hier ja schon was zu geschrieben.

> 2.)Sei $G : M [mm]\to[/mm] N$ eine Abbildung ($G$ wie
> Gesichtspunkt). Dann ist [mm]$\sim_G \subseteq[/mm] M [mm]\times[/mm] M$
> definiert durch $m [mm]\sim_G[/mm] m'$ genau dann, wenn $G(m) =
> G(m'), eine Äquivalenzrelation.
>  Die Äquivalenzrelation [mm]\sim_G[/mm] heisst Bildgleichheit
> bezüglich G.
>  (z.b. [mm]G: \mathbb{R}^2 \to \mathbb{R} : (x,y) \mapsto x-y[/mm]
> oder [mm]G: \mathbb{R}^2 \to \mathbb{R} : (x,y) \mapsto x^2+y^2[/mm])

Hier hast du doch zwei Beispiele! Schau dir das ganze doch mal in dem Fall an!

Nehmen wir die zweite Funktion, welche $(x, y)$ auf [mm] $x^2 [/mm] + [mm] y^2$ [/mm] abbildet. (Merke: das ist die euklidische Norm des Vektors $(x, y)$ im [mm] $\IR^2$, [/mm] jedoch quadriert.)

Wann haben zwei Punkte $(x, y)$ und $(x', y')$ das selbe Bild? Also wann gilt $G(x, y) = G(x', y')$? Oder anders gesagt, wann gilt $(x, y) [mm] \sim_G [/mm] (x', y')$?

Wegen meiner Bemerkung ist dies genau dann der Fall, wenn die Vektoren $(x, y)$ und $(x', y')$ die gleiche Laenge haben! Daraus folgt: die Aequivalenzklasse von $(x, y)$ bzgl. [mm] $\sim_G$ [/mm] ist die Menge aller Vektoren im [mm] $\IR^2$, [/mm] welche die gleiche Laenge wie $(x, y)$ haben -- also ein Kreis um den Ursprung mit Radius [mm] $\|(x, y)\|_2$. [/mm]

Hilft dir das weiter?


Nun zum anderen Beispiel, wo $G(x, y) = x - y$ ist. Hier haben zwei Vektoren $(x, y)$ und $(x', y')$ das gleiche Bild, wenn $x - y = x' - y'$ ist, also wenn ihre Differenzen gleich sind.

Damit ist die Aequivalenzklasse von $(x, y)$ mit $x - y =: r$ gerade die Gerade im [mm] $\IR^2$, [/mm] welche aus Punkten $(x', x' - r)$, $x' [mm] \in \IR$ [/mm] besteht!

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de