www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Relationen" - Äquivalenzrelation
Äquivalenzrelation < Relationen < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenzrelation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:19 Di 27.04.2010
Autor: alina00

Aufgabe
Sei R ein (nicht notwendig kommutativer) Ring mit Einselement. Die Elemente a; b der reellen Zahlen heißen
assoziiert, wenn es eine Einheit u gibt mit ua = b.

Zeigen Sie: Assoziiertheit ist eine Äquivalenzrelation

Also Äquivalenzrelation ist ja
1. Reflexivität
2. Symmetrie
3. Transitivität

Bei Punkt 1 fällt mir noch etwas ein, nämlich vielleicht
a ist assoziiert zu sich selber, d.h es gibt ein e mit a*e=a
dann ist [mm] \bruch{a}{a}= [/mm] 1 also e = 1
Da bin ich mir aber auch gar nicht sicher irgendwie.
Bei den anderen beiden Punkten habe leider keine Ahnung wie ich das machen soll, wäre toll wenn mir da jemand helfen könnte.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Äquivalenzrelation: Antwort
Status: (Antwort) fertig Status 
Datum: 08:30 Mi 28.04.2010
Autor: fred97


> Sei R ein (nicht notwendig kommutativer) Ring mit
> Einselement. Die Elemente a; b der reellen Zahlen heißen
>  assoziiert, wenn es eine Einheit u gibt mit ua = b.
>  
> Zeigen Sie: Assoziiertheit ist eine Äquivalenzrelation
>  Also Äquivalenzrelation ist ja
>  1. Reflexivität
>  2. Symmetrie
>  3. Transitivität
>  
> Bei Punkt 1 fällt mir noch etwas ein, nämlich vielleicht
>  a ist assoziiert zu sich selber, d.h es gibt ein e mit
> a*e=a
>  dann ist [mm]\bruch{a}{a}=[/mm] 1 also e = 1
>  Da bin ich mir aber auch gar nicht sicher irgendwie.


War doch ganz O.K. es ist 1*a=a , also a ist assoziiert zu sich selbst

>  Bei den anderen beiden Punkten habe leider keine Ahnung
> wie ich das machen soll, wäre toll wenn mir da jemand
> helfen könnte.

Symmetrie: Sei ua=b mit einer Einheit u. Zeige: es gibt eine Einheit v mit a=vb

Transitivität: Sei ua=b und vb=c mit einheizen u und v. Zeige : es gibt eine Einheit w mit: wa=c.

FRED

>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de